Application of Overall Equipment Effectiveness to Biopharmaceutical Manufacturing - Overall equipment effectiveness is an ideal measure for capital equipment-intensive businesses such as biopharmaceut

ADVERTISEMENT

Application of Overall Equipment Effectiveness to Biopharmaceutical Manufacturing
Overall equipment effectiveness is an ideal measure for capital equipment-intensive businesses such as biopharmaceutical manufacturing.


BioPharm International
Volume 22, Issue 5

OEE Quantification


Table 2. Overall equipment effectiveness and component values for various industries
OEE data permit benchmarking within and across industries that drives targets for continuous improvement initiatives (Table 2).10 Typically, quantitative data is desirable but qualitative data (e.g., estimates from subject matter experts) also can be useful.7 An OEE around 85% is considered world class performance across industries for a batch plant.11–14 If OEE approaches 85% but is still constraining, then likely additional capacity or process redesign is needed. If OEE is <70%, then usually the desired improvement goal is achievable using current equipment and processes.13

OEE associated with continuous manufacturing plants (e.g., chemical, petroleum, or paper industries) typically have high Aeff and Peff with OEE primarily determined by Qeff (i.e., yield).15 OEE associated with batch manufacturing plants have lower Aeff owing to more frequent set up and clean-up steps. Most biomanufacturing processes are batch in nature with a few notable exceptions. OEE data can be used to create either a histogram of OEE level versus its frequency or a progressive run chart showing OEE levels before and after improvement implementation.16

COMPONENTS OF OEE

Time


Table 3. Breakdown of overall equipment effectiveness availability time calculations2,6
A major part of OEE is time. Waterfall charts and similar tables are useful ways to visually depict time losses (Table 3). Starting with the total available hours as 100%, the hours that production is not planned to run (such as planned preventative maintenance, shutdowns, and holidays) and the time lost to set up or clean up and breakdowns (availability loss) are subtracted. Next, the time caused by capacity losses caused by slow running speeds is subtracted (performance loss), followed by the time caused by losses from waste and defects such as discarded lots (quality loss). The result is the effective hours of processing for output of acceptable product lots.17


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

New Tax Rules May Deter Future Pharma M&A
October 1, 2014
NIH Seeks to Improve Vaccine Response with New Adjuvants
September 30, 2014
New Report Details Players and Pipelines in the Biosimilar Space
September 30, 2014
Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
Author Guidelines
Source: BioPharm International,
Click here