Expression System Royalties Battle - With all of the new expressions systems being developed, companies must decide what improved production and yield are really worth. - BioPharm International

ADVERTISEMENT

Expression System Royalties Battle
With all of the new expressions systems being developed, companies must decide what improved production and yield are really worth.


BioPharm International
Volume 22, Issue 4

LICENSE OR ACQUIRE

Pharmaceutical companies requiring technology improvements may also consider company acquisition. In 2006, for example, Merck acquired GlycoFi for $400 million to access its yeast glycoengineering and optimization technology. GlycoFi's technology is designed to produce therapeutic proteins more effectively in Pichia pastoris (yeast) instead of Chinese hamster ovaries (CHO) or NS0 cells, offering improved speed and quality.

Such outright technology acquisitions can be cleaner than technology deals that involve some kind of risk–reward sharing over time, where both the product developer and the innovator company share the risk if product sales do not meet expectations.

Another concern with licensing and royalties is "royalty stacking." Though more common in drug product licensing, it is one of the risks technology adopters face. Royalty stacking is caused when multiple overlapping patents compel companies to obtain multiple licenses. Pharmaceutical companies are increasingly hesitant to form alliances with biotechnology companies if potential royalty stacking issues exist.

Information on alternative expression systems and genetic engineering technologies is readily available.1 Most technologies can be licensed at reasonable fees for evaluation purposes, and most are available for commercial license on a nonexclusive basis. Some expression systems may be licensed exclusively. This generally costs more than taking a nonexclusive license, but can provide insurance against your product competing with another similar one.

Although technology licensing increases costs through licensing fees and royalties based on annual product revenue and sales, it is often the only prudent option for most organizations. Licensing is the only legal and fair method of using technology developed by others, particularly if covered by patents. Most organizations, whether biopharmaceutical companies, CROs, CMOs, universities, or government laboratories, seek to license out any relevant technology that they have invented and patented to get some return on their investment.

Licensor organizations generally will work with companies to tailor licenses to their needs. This may involve various combinations of upfront and postmarketing fee arrangements. For example, a small company may prefer to pay a lower upfront licensing fee in return for somewhat higher royalty rates on eventually product sales. Those confident that a technology will be used to manufacture one or more products may prefer to pay higher upfront fees with lower back-end royalty rates. For major products, including blockbusters, this approach can save hundreds of millions over the course of a product's commercial life.

Many technology sources are receptive to providing a limited license for access and use of their technology for in-house evaluation purposes. Some companies and noncommercial organizations with expression systems in development may be eager to collaborate with companies that will actually use their technology for product manufacture.

With the pharmaceutical industry being very conservative, and with companies and regulators having distinct preferences for proven, known technologies, companies among the first to actually commercially manufacture a product using a newer technology can provide its developer with real-world cost-of-manufacture data and the references needed for wider commercialization of the new technologies. Thus, those among the first to license a new expression system or related genetic engineering technology can often receive better licensing terms, although the risk of failure or problems obviously increases with being among the first adopters.

Unlike licensing of actual product candidates, most licensing of process technology will be done in the relatively early stages of product development. Because a large number of technologies is available from many sources, there is more competition. This can tend to keep licensing terms down and increase the predictability of licensing terms and royalties associated with manufacturing technologies, compared to licensing of product candidates. Thus, in comparison with licensing of candidate products, licensing of manufacturing technologies tends to be more competitive and predictable in terms of fees and royalties.

ARE NEWER TECHNOLOGIES WORTH THE COST?

For an industry based on innovation, newer manufacturing technologies can be vital for a company's survival, and thus worth the expense, time, and effort involved. Older technologies have the advantages of predictability and regulatory acceptance. When considering that many of these technologies entail lost opportunities as we move into the future, older technologies may find themselves increasingly limited by their performance.

Eric S. Langer is president and managing partner at BioPlan Associates, Inc., Rockville, MD. He is also the editor of Advances in Large-scale Biopharmaceutical Manufacturing and Scale-up Production, and a member of BioPharm International's Editorial Advisorial Board. 301.921.5979,

REFERENCES

1. Rader R. Biopharmaceutical expression systems and genetic engineering technologies. Rockville MD: BioPlan Associates, Inc.;2008.

2. Sixth annual report and survey of biopharmaceutical manufacturing, 2008–2009. Rockville MD: BioPlan Associates, Inc.;2009.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Novartis and GSK Trade Assets
April 22, 2014
Lilly to Acquire Novartis Animal Health
April 22, 2014
EMA Warns of Falsified Herceptin Vials
April 16, 2014
Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
Author Guidelines
Source: BioPharm International,
Click here