Chromatography Optimization Strategy - Robust packing procedures can improve process performance and increase resin lifetime. - BioPharm International


Chromatography Optimization Strategy
Robust packing procedures can improve process performance and increase resin lifetime.

BioPharm International
Volume 22, Issue 3

Figure 5. Large-scale experimental data versus model
Finally, the correlation was developed from a curve fit analysis of the expression with the experimental data. The reliability of the model developed at a 100-mm scale was challenged by comparing the model with large-scale column experimental data (Figure 5) with promising results.

Figure 6. Pressure drop of packed beds of different interstitial bed porosities
Process parameters could be predicted at given conditions providing insights into the stability of the packed bed and settings to achieve optimum performance. Significant influence of the interstitial bed porosity and particle size on pressure drop (Figure 6) shows that a nonhomogeneous packed column will yield a larger pressure drop than expected from a homogeneous pack in which the interstitial porosity or void fraction is smaller. Therefore, a typical pressure drop may be an indicator of column bed deterioration. Increased interstitial porosity suggests an unstable pack because of partial motility of the beads in the column. Decreased bead size or particle diameter for unstable packs increases the pressure drop substantially at any given flow rate.

The bench-scale results confirmed headspace formation at process flow rate with previous resin compression parameter thus marking a relationship of resin amount to the pack instability and performance variability seen on large scale. To optimize the chromatography operation, it was considered to pack at higher compression to increase resin stability at process flow rates. The use of more resin rather than lowering the bed height to compress further the resin or decreasing flow rates to minimize head space was avoided to prevent resolution loss and additional changes to regulatory filing.

The pressure-flow model predicted that incrementing compression to 1.18 (as recommended by manufacturer) will require a minimum flow velocity of 191.6 cm/h to achieve a bed height of 12 cm. For large-scale columns using flow-packing techniques, in which the resin is compressed by increasing the mobile phase velocity, this flow is not enough because of the resin expansion experienced once the flow is stopped to lower the top plate adaptor to the desired height of 12 cm, and therefore, a higher flow rate is required.4

It was determined from the pressure-flow simulation data that, for an optimum packing flow (85% of u CRI), the required flow rate to flow-pack the resin to 1.18 compression is close to 226 cm/h. For the existing 1,000-mm column hardware, this represented a limitation because the expected pressure drop of the resin plus the pressure drop of the hardware exceeded the maximum allowable working pressure of the column. Axial compression was introduced to the packing procedure to compensate for system limitations of the flow-pack technique at higher compression.


Packing studies were performed at large scale (1,000 mm) to understand the influence of column hardware, flow cell geometry effects, and variable resin amount on the pack stability. The studies consisted of a series of experiments that include dye and cleaning studies, and evaluation of various packing approaches.5

Dye studies using phenol red revealed equipment limitations of flow distribution under the top slurry nozzle through inspection of bed cross-sectional cuts at various angles, indicating that the flow velocity under the slurry nozzle is lower than the average velocity of the sample bands (~2.5 CV) or dye injection. A low compression pack revealed low stability underneath mobile phase inlet across bed diameter. By increasing the resin amount and thus the compression, the sample band distribution was more homogeneous throughout the bed under the top slurry nozzle.

A cleaning study evaluated the column cleaning using phenol red as a visual indicator for cleaning aptness. The packed column was buffer exchanged from packing buffer into a 0.1 g/L phenol red in packing buffer for 2 CV duration. The equilibration followed a five-hour static hold to allow diffusion toward stagnant zones at the edge of the packed bed. Once hold was completed, the bed was washed with packing buffer at a 3 CV duration followed by a 1.5 static hold and storage. These set of conditions were selected as a stress-case scenario when compared to current hold parameters. Inspection of cross-sectional cuts of the packed bed revealed no traces of phenol red. This study provided cleaning capability of the column as retention volume basis (it is not an evaluation of impurity or carryover clearance that could bind into the resin during the chromatography step).

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here