Considerations for Scaling-up Depth Filtration of Harvested Cell Culture Fluid - Data on the performance and variability of different formats. - BioPharm International

ADVERTISEMENT

Considerations for Scaling-up Depth Filtration of Harvested Cell Culture Fluid
Data on the performance and variability of different formats.


BioPharm International
Volume 22, Issue 3


Figure 10. Variance components (excluding Mini devices)
The ANOVA analysis confirms that the 23.5 cm2 Mini is a major source of capacity variability (Lutz, 2006). Excluding these devices causes the total capacity variance to drop 6x, from 4,072 (L/m2)2 to 735 (L/m2)2. This corresponds to a RSV = 6.8% (relative standard deviation = standard deviation/average). Note that the variances were assumed independent, so they are additive while the RSV are square roots of the variance and do not add. The variance distribution is shown in Figure 10. The variance is dominated by location with a RSV = 5.1%, which includes operator, instrumentation and experimental error. Sequence (capacity of first versus final runs) caused mean filter capacity to decrease approximately 10% with a RSV = 3.3%. Size and format are negligible contributors, indicating that there are minimal differences in filter capacity between the remaining laboratory-scale Pod filter (LSP), Pod, and Stack formats. Device variability with a RSV = 3.0%, is associated with filter variation in a single lot.

It was anticipated that size would affect variability more significantly. Consider a larger filter or filter assembly with area A composed of n equal small filter elements of area A. If these small elements have a mean permeability μ and a standard deviation σ, the assembly of n elements has the same mean permeability μ and a standard deviation of either σ if the elements are perfectly correlated or σ/√n if the filter areas are statistically independent. The actual filter should lie between these extremes and show a reduction in variability with surface area. This can be called an averaging effect. This data shows that from the 270 cm2 LSP device upward, the variability is somewhat constant and any averaging effect is negligible compared with the other sources.


Figure 11. Depth filter resistance profiles (excluding Mini devices)
Excluding Mini devices, Figure 11 shows that the resistance profiles for all the remaining tests lie very close together. The capacities at 0.15 psi/LMH are 400 L/m2 +/–10%. LSP devices with 270 cm2 are the smallest-scale devices that are comparable with large- scale filter assemblies. It also suggests that the Stack and Pod formats have equivalent capacities and can be used interchangeably. The Mini is not a preferred scaling device.

Mini devices may perform differently as a result of having low area, in which the averaging effect has not yet reduced scale variability. It also may perform differently because the peripheral seal region is a larger fraction of the total filter area in the Mini compared with the other filter formats. The region near the seal may have different flow because of filter media compression. It has been observed in other testing (data not shown here) that the Mini capacity can vary up to +/–30% among devices or between the Mini and larger devices.

Manufacturing-Scale Variability

A review was done of 14 different 12,000-L manufacturing-scale runs of the same monoclonal antibody product. The way these runs were performed allowed the resistance to increase to 0.15 psi/LMH and the capacity determined. The batch-to-batch RSV was 10%. This includes batch-to-batch variability arising from feed, filter, and operating conditions. A comparison with the format study RSV = 6.8% confirms expectations that additional variability in capacity arises from differences in feed and filter media lots.

The manufacturing-scale capacities closely followed a normal distribution when graphed on a quartile plot. Using a safety factor of 1.4 sizes a filter assembly at 1.4 times the mean capacity, four relative standard deviations above the mean capacity. The chance of requiring a larger area is given by the area under the normal distribution as one in 10,000 batches.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Amgen, Sanofi, and Ono Pharmaceuticals Partner with Universities on Transmembrane Protein Research
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Novartis Sells Influenza Vaccine Business to CSL for $275 Million
October 27, 2014
Author Guidelines
Source: BioPharm International,
Click here