Protein Peptide Purification using the Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Process - A new method for MAb purification. - BioPharm International

ADVERTISEMENT

Protein Peptide Purification using the Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Process
A new method for MAb purification.


BioPharm International
Volume 22, Issue 1

CONCLUSION AND OUTLOOK

The principle of the MCSGP process and its characteristics with respect to existing technologies, such as SMB, has been explained and promising areas of application have been discussed. For polypeptide purification, a batch chromatography step has been compared to the experimental results of the MCSGP unit. It has been shown that strong performance improvement in yield and productivity are possible in the MCSGP setup. The best MCSGP operating point showed a 25-fold improvement in productivity and yields that were 5–7% higher than the batch purification.

Because of the significant potential of the MCSGP process to reduce the cost of chromatographic steps for challenging biomolecule purifications, further applications are foreseeable.

Lars Aumann, PhD, is chief technology officer, Guido Stroehlein, PhD, is chief executive officer, and Thomas Mueller-Spaeth, PhD, is chief scientific officer, all at ChromaCon AG, Zürich, Switzerland, +41 44 633 7748,
Massimo Morbidelli, PhD, is professor for chemical and bioengineering at ETH Zürich, Zürich, Switzerland. Berthold Schenkel, PhD, is head of technology group 1, CHBS, at Novartis Pharma AG, Basel, Switzerland.

REFERENCES

1. Aumann L, Morbidelli M. A continuous multicolumn countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng. 2007;98(5):1043–1055.

2. Aumann L, Stroehlein G, Morbidelli M. Parametric study of a 6-column countercurrent solvent gradient purification (MCSGP) unit. Biotechnol Bioeng. 2007;98(5):1029–1042.

3. Aumann L, Morbidelli M. A semicontinuous 3-column countercurrent solvent gradient purification (MCSGP) process. Biotechnol Bioeng. 2008;99(3):728–733.

4. Stroehlein G, Aumann L, Mueller-Spaeth T, Tarafder A, Morbidelli M. Continuous processing—the multicolumn countercurrent solvent gradient purification process. Supplement to BioPharm Int. 2007 Feb.

5. Aumann L, Morbidelli M, inventors; ChromaCon AG, assignee. European patent, EP 05405327.7, EP 05405421.8, 2005.

6. Stroehlein G, Aumann L, Mueller-Spaeth T, Morbidelli M. A continuous, countercurrent multicolumn chromatographic process incorporating modifier gradients for ternary separations. J Chromatogr A, 2006; 1126(1–2),338–346.

7. Mueller-Spaeth T, Aumann L, Melter L, Stroehlein G, Morbidelli M. Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient puri?cation (MCSGP), Biotechnol Bioeng. 2008;100(6):1166–1177.

8. Kornmann H. Purification of MAbs: Performance comparison of batch and continuous chromatography (MCSGP); BioPharm Scale Up 2008, Geneva.

9. Tarafder A, Aumann L, Mueller-Spaeth T, Morbidelli M. Improvement of an overloaded, multi-component, solvent gradient bioseparation through multi-objective optimization. J Chromatogr A, 1167(1):42-53, 2007.

10. Miller L, Grill C, Yan T, Dapremont O, Huthmann E, Juza M. Batch and simulated moving bed chromatographic resolution of a pharmaceutical racemate. J Chromatogr A. 2003;1006(1–2),267–280.

11. Paredes G, Stadler J, Makart S, Morbidelli M, Mazzotti M. SMB operation for three-fraction separations: Puri?cation of plasmid DNA. Adsorption. 2005;11:841–845.

12. Li P, Xiu G, Rodrigues AE. Proteins separation and puri?cation by salt gradient ion-exchange SMB, AIChE J. 2007;53(9):2419.

13. Antos D, Seidel-Morgenstern A. Application of gradients in the simulated moving bed process. Chem Eng Sci. 2001; 56:6667–6682.

14. Wankat PC. Simulated moving bed cascades for ternary separations. Industrial Eng Chem Res. 2001;40:6185–6193.

15. Kessler LC, Gueorguieva L, Rinas U, Seidel-Morgenstern A. Step gradients in 3-zone simulated moving bed chromatography application to the purification of antibodies and bone morphogenetic protein-2. J Chromatogr A. 2007;1176:69–78.

16. Mueller-Spaeth T, Aumann L, Stroehlein G, Morbidelli M. Role of cleaning in place (CIP) in the purification of MAb supernatants, accepted for publication in Separation Sci Tech.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

First Biosimilar Application Kicks Off Legal Battle
October 31, 2014
FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Amgen, Sanofi, and Ono Pharmaceuticals Partner with Universities on Transmembrane Protein Research
October 28, 2014
Author Guidelines
Source: BioPharm International,
Click here