Manufacturing Process Development for an Epidermal Growth Factor-Based Cancer Vaccine - By incorporating disposable technologies and an improved purification scheme, scale-up and validation problems w

ADVERTISEMENT

Manufacturing Process Development for an Epidermal Growth Factor-Based Cancer Vaccine
By incorporating disposable technologies and an improved purification scheme, scale-up and validation problems were resolved.


BioPharm International Supplements


Clinical experiences with CIMAvax-EGF in advanced lung cancer patients demonstrated that vaccination provoked an increase in anti-EGF antibody titers and a decrease in EGF sera concentration. The increase in anti-EGF antibodies directly correlated with increased survival of vaccinated patients. Decreases in EGF sera concentration also correlated with increased survival of vaccinated patients.14,17, 19 In randomized controlled trials, it was demonstrated that overall, more vaccinated patients survived than non-vaccinated controls, an effect that is much greater in patients under 60 years old.19

The long path for translating this basic concept into a real product (CIMAvax-EGF) began in 1992. The first challenge was trying to prepare an immunogenic preparation with a self antigen, because any cancer vaccine based on self antigens must be designed to create an adequate presentation environment to provoke a clinically significant immune response.9 To achieve this, the self protein (EGF) was conjugated to a immunogenic carrier protein. Several carrier proteins were tested in the preclinical10,11 and clinical settings. 12–14,17–19 Based on immunogenicity results, the recombinant protein rP64k from Neisseria meningitides was selected for continued product development.13

Two adjuvants, aluminum hydroxide and Montanide ISA-51 (Seppic, France), were tested. The best results, in terms of immunogenicity of the vaccine formulation, were obtained using Montanide ISA-51, so this adjuvant was selected for further product development.13

For development of this vaccine through proof-of-concept (POC) clinical trials, a fairly simple manufacturing process was used. This initial production process consisted of chemical conjugation using a linker reagent, followed by an impurity-removal step with a dialysis membrane. However, this process had practical disadvantages for scale-up and compliance with good manufacturing practice (GMP) requirements.

Process Development

As the product development cycle advanced to late clinical trials, the manufacturing process needed to be improved to comply with GMP requirements and undergo validation. The challenge was to develop a new process for advanced stages of development (ASD) while maintaining the performance equivalence with the vaccine preparation used for the POC studies.

The process development strategy focused on the following goals:

  • Optimizing the conjugation reaction
  • Replacing the membrane dialysis purification process with a step that could be scaled up more easily
  • Incorporating disposable tech-nology to further facilitate scale-up and cleaning validation
  • Improving process and product characterization
  • Evaluating the process con-sistency of the new process
  • Evaluating the equivalence of the vaccine preparations.

Optimizing the Conjugation Reaction

The chemical conjugation method developed for the POC vaccine preparation allowed unspecific binding of the immunogenic carrier protein (rP64K) and the autologous protein (rEGF). This procedure required a high molar quantity of rEGF to avoid reaching the reaction limit. To ensure that the conjugation reaction yielded reproducible conjugation products following scale-up, conjugation reaction kinetics were studied to understand reaction times, the effect of reactant feeding strategies, and mixing requirements. As a result of the optimization studies, mixing and reaction times were defined that allowed reproducible conjugation results following scale-up of the process more than ten- fold. The working ranges for the main process variables were set for commercial operation following robustness studies.

Replacing the Membrane Dialysis Purification Step

Most of the limitations of the process used to manufacture product for the POC studies resulted from the membrane-based dialysis purification step, which was designed to remove the free conjugation reagent and other chemical substances before final formulation. The main drawbacks of this step were extended process time, limited scalability, and the inclusion of several manual operations in the process.

To overcome these difficulties, a purification step based on crossflow membrane ultrafiltration–diafiltration (UF–DF) was introduced as an alternative to the dialysis membrane.

This UF-DF procedure reduced processing time and significantly reduced the risk of microbial contamination. It also made it possible to perform clean-in-place operations. Furthermore, this purification alternative could be scaled up in a linear fashion to adapt to varying batch volumes.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
USP Center in Ghana Receives International Lab Accreditation
August 15, 2014
USP Awards Analytical Research
August 15, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
Guilty Plea to Importing Illegal Cancer Drugs
August 15, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here