Developing and Manufacturing Attenuated Live Bacterial Vaccines - Specific requirements must be met during preclinical and clinical development, as well as manufacturing and release testing of LBVs. -


Developing and Manufacturing Attenuated Live Bacterial Vaccines
Specific requirements must be met during preclinical and clinical development, as well as manufacturing and release testing of LBVs.

BioPharm International Supplements


Live attenuated vaccines have numerous advantages over killed and subunit vaccines. However, they also have higher requirements regarding safety and quality. We have highlighted the challenges faced during preclinical and clinical development, as well as manufacturing and release testing for three attenuated live bacterial vaccines registered for human use—M. bovis BCG, S. typhi Ty21a, and V. cholerae CVD 103-HgR.

When generating attenuated vaccines, attention must be given to the appropriate balance of attenuation and immunogenicity. We have demonstrated the progress in attenuation approaches from the empirical approach of the M. bovis BCG strain to the targeted attenuation of Ty21a and CVD 103-HgR.

In the absence of correlates of protection of the vaccine, large Phase-3 field trials need to be conducted. Apart from ethical considerations caused by exposure of the trial participants to pathogens, potential side effects and safety issues are most prominent topics during the development and clinical trials of a vaccine. The orally administered Ty21a vaccine exhibits an excellent tolerability with an incidence rate of only 0.002% in addition to the absence of reversion to wildtype during the 30 years since its development. This clearly demonstrates the advantage of oral vaccination with a live attenuated vaccine. On the other hand, the issues of performing field studies in absence of the pathogen were highlighted with the example of CVD 103-HgR.

The challenges of manufacturing vaccines originating from the last century were demonstrated with the example of the BCG vaccine. Although novel manufacturing techniques may exist, their implementation will probably require new field trials, and hence, vaccine manufacturers are likely to stick to the historical technologies.

There are several requirements to be fulfilled during the development and cGMP manufacturing of live attenuated vaccines. We have listed the most important challenges and provided examples of how they can be met.

At the time when this article was written, GUIDO DIETRICH was vice president of operations at Berna Biotech AG, Berne, Switzerland. He currently is the director of bulk technologies at GlaxoSmithKline Biologicals, Wavre, Belgium, ANDRE COLLIOUD is the vice president of industrial development at Crucell NV, Berne, Switzerland, and SIMON A. ROTHEN is the CEO of Sartec GmbH, Thoerishaus, Switzerland, +32-10-85-3625,


1. Sonnleitner B, Locher G, Fiechter A. Automatic bioprocess control. 1. A general concept. J Biotechnol. 1991;19:1–18.

2. Locher G, Sonnleitner B, Fiechter A. Automatic bioprocess control. 2. Implementation and practical experiences. J Biotechnol. 1991;19:127–144.

3. Rothen S A, Saner M, S Meenakshisundaram, Sonnleitner B, Fiechter A. Glucose uptake kinetics of Saccharomyces cerevisiae monitored with a newly developed FIA. J Biotechnol. 1996;50:1–12.

4. Calmette A, Guerin C, Negre L, Bocquet A. Sur la vaccination prE9ventive des enfants nouveau-nE9s contre la tuberculose par le BCG. Ann Inst Pasteur. 1927;3:201.

5. Levine MM, Ferreccio C, Black RE, Germanier R. Large-scale field trial of Ty21a live oral typhoid vaccine in enteric-coated capsule formulation. Lancet. 1987;1:1049–1052.

6. Levine MM and Kaper JB. Live oral vaccines against cholera: an update. Vaccine. 1993;11:207–212.

7. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999;284:1520–1523.

8. Germanier R, FFCrer E. Isolation and characterisation of Gal E mutant Ty21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis. 1975;131:553–558.

9. Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine. 2003;21:401–418.

10. Tacket CO, Cohen MB, Wasserman SS, et al. Randomized, double-blind, placebo-controlled, multicentered trial of the efficacy of a single dose of live oral cholera vaccine CVD 103-HgR in preventing cholera following challenge with Vibrio cholerae O1 El tor inaba three months after vaccination. Infect Immun. 1999;67:6341–6345.

11. Viret JF, Dietrich G, Favre D. Genetic aspects relevant to the biosafety of the recombinant live oral Vibrio cholerae strain CVD 103-HgR. Vaccine. 2004;22:2457–2469.

12. Bloom BR, Murray CJL. Tuberculosis: commentary on a reemergent killer. Science. 1992;257:1055–1064.

13. Dietrich G, Mollenkopf HJ, Weber H, Diehl KD, Knapp B, Kaufmann SHE, Hundt E. Cultivation of Mycobacterium bovis BCG in bioreactors. J Biotechnol. 2002;96:259–270.

14. Dietrich G, Griot-Wenk M, Metcalfe IC, Lang AB, Viret JF. Experience with registered mucosal vaccines. Vaccine. 2003;21:678–83.

15. Pharmaceutical Inspection Convention. Guide to good manufacturing practice for medicinal products. Annex 2 manufacture of biological medicinal products for human use. Available from:

16. Monograph: Typhoid Vaccine (Live, Oral, Strain Ty21a). European Pharmacopiea 5.0/1055

17. Monograph: BCG Vaccine (lyophilized). European Pharmacopiea 5.0/0163.

blog comments powered by Disqus



Novartis Reports Positive Results for Secukinumab in Ankylosing Spondylitis Trials
October 23, 2014
Pall ForteBio Releases Bioprocessing Contamination Detection Kit
October 22, 2014
Roche to Expand and Improve its Basel Site
October 22, 2014
FDA Panel Unanimously Backs Secukinumab for the Treatment of Psoriasis
October 22, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here