Developing and Manufacturing Attenuated Live Bacterial Vaccines - Specific requirements must be met during preclinical and clinical development, as well as manufacturing and release testing of LBVs. -

ADVERTISEMENT

Developing and Manufacturing Attenuated Live Bacterial Vaccines
Specific requirements must be met during preclinical and clinical development, as well as manufacturing and release testing of LBVs.


BioPharm International Supplements


Recently, technologies for dispersed cultures of M. bovis BCG in synthetic media in small-scale bioreactors were developed.13 These cultures allow recording and adjusting of culture parameters and give rise to single bacilli with a high degree of live bacteria. In mouse studies, bioreactor-grown M. bovis BCG exhibited slightly stronger replication and persistence than the vaccine produced under the classical conditions. The protective efficacy in the mouse against challenge with M. tuberculosis was identical for both vaccine preparations. However, the novel manufacturing technique is unlikely to be implemented in commercial production of the BCG vaccine against tuberculosis since such a change would require a clinical trial that may take over a decade.


Figure 1. Ty21a vaccine production: During the production process of the Ty21a vaccine, bacteria derived from working seed lot ampoules are inoculated in shake-flask cultures, followed by growth in medium-and large-scale bioreactors. The bacteria are harvested by centrifugation. For downstream-processing, the bacteria are mixed with a stabilizer and lyophilized.
The production of the S. typhi Ty21a vaccine is based on a master and working seed lot system. During the production process of the Ty21a vaccine, bacteria derived from working seed lot ampoules are inoculated in shake flask cultures, followed by growth in medium-and large-scale bioreactors. Bacteria were harvested by centrifugation (Figure 1). For downstream-processing, the bacteria are mixed with a stabilizer containing sucrose, ascorbic acid, and amino acids, and then lyophilized. The lyophilized bacteria are subsequently mixed with lactose and magnesium stearate as excipients and filled into gelatine capsules that are coated with an organic solution to render them resistant to dissolution in stomach acid. The enteric, coated capsules are then packaged into blister packs for distribution. Each capsule contains 2–10 x 109 (2–6.8 x 109 in the US) lyophilized live bacteria and they are administered orally.14 Alternatively, a double chambered sachet formulation has been developed, with one sachet containing the lyophilized vaccine and the other containing a bicarbonate buffer to neutralize stomach acidity. The contents of the two sachets are dissolved in 100-mL water and ingested by the vaccinee. The production process is similar for CVD 103-HgR. However, for this vaccine, only the double-chambered sachet formulation was developed, with 2–10 X 108 live bacteria per sachet for travellers from nonendemic regions and 2–10 X 109 for residents of endemic regions.

The release of commercial batches of both vaccines is based on microbiological and biochemical tests. The potency assay for both vaccines relies on determining the live bacteria, and therefore, special attention has to be given to this assay. Another critical test is determining the vaccine purity. Contaminating microorganisms may not be easily detected in a vaccine dose containing more than one billion live vaccine bacteria, and hence, special purity assays needed to be developed. Finally, the attenuated phenotype of the bacteria has to be demonstrated for each vaccine batch.

The manufacturing, quality-control, and release testing of all vaccines have to follow the guidelines issued by regulatory authorities covering cGMP requirements for pharmaceuticals, biologicals, and vaccines. For example, Annex 2 of the PIC-guide to good manufacturing practice for medicinal products, clearly specifies that dedicated facilities should be used for producing the BCG vaccine.15 There are additional challenges posed by LBVs in comparison to other vaccines. When working with lyophilized live bacteria in large quantities, special cleanroom design and monitoring procedures are required to maintain appropriate cleanroom conditions. Also, relevant biosafety guidelines have to be followed for large-scale manufacturing of live bacteria.

Pharmacopoeia monographs are in place for the release testing of Ty21a and BCG.16,17 However, after internal testing and release by the vaccine manufacturers, each vaccine batch must undergo additional quality-control testing by regulatory authorities before it can be commercialized.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Suppliers Seek to Boost Single-Use Technology
August 21, 2014
Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
USP Center in Ghana Receives International Lab Accreditation
August 15, 2014
USP Awards Analytical Research
August 15, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here