The Role of Media Development in Process Optimization: An Historical Perspective - The development of culture media continues to improve biopharmaceutical manufacturing processes. - BioPharm

ADVERTISEMENT

The Role of Media Development in Process Optimization: An Historical Perspective
The development of culture media continues to improve biopharmaceutical manufacturing processes.


BioPharm International Supplements


Serum-Free Medium

Initially, serum-free medium was introduced into biopharmaceutical manufacturing because of the cost and process constraints of serum. Serum-free medium (SFM) was first used in mammalian cell culture by Ham in 1965. Much of this early work involved anchorage-dependent cell lines.7–9 To achieve growth-promoting effects similar to those of serum, SFM often was supplemented with animal-derived components that replaced the role of serum, such as transferrin, albumin, insulin, and other biological extracts. Serum supplementation continues to be used in many early stage research applications, clonal development, and vaccine production.

Establishing more defined media regimes reduced the problems associated with the batch-to-batch variability seen with serum and allowed more consistent product and process control with simpler purification and downstream processing strategies. However, having more defined media often resulted in extended cell adaption times, reduced growth rates, and decreased product titers, all of which increased the costs of manufacture.

The most common serum-free supplements incorporated into a basal medium have been growth factor sources, transferrin, hydrolysates, and albumin. Even today, some of these supplements are animal-derived (transferrin, albumin), contain animal components, or are ill defined and are still used in manufacturing processes because of the lack of safe alternatives. The regulatory issues of possible contamination of the final product with adventitious agents and ill-defined processes therefore remain. Chemically defined SFM are commercially available, but for some cell lines it has not been possible to design a robust, animal-free, and chemically defined medium that will perform as well as serum. Often, different cell lines and clones exhibit a large degree of variability in their nutritional requirements to achieve optimal growth and performance, resulting in a lengthy and costly media development program.

Medium Supplements

The remainder of this article will discuss four media supplements commonly used in the biopharmaceutical industry and recent advances in their development.

Hydrolysates

Regulatory agencies have encouraged the development of serum-free media devoid of any animal-derived components to avoid the risk of introducing adventitious agents such as viruses and prions. Protein hydrolysates have been shown to have beneficial effects on cell growth and productivity and are a relatively effective alternative to the use of serum. Peptones derived from bovine milk or animal tissues, such as Primatone RL (MP Biomedicals, Irvine, CA), are capable of supporting a number of different cell lines in the absence of serum.10 However, non-animal hydroly-sates from microorganisms such as yeast11 and plants including soy and rapeseed12,13 are being investigated as supplements for supplying the nutritional requirements of mammalian cells in culture.

Although plant-based hydrolysates have been shown to promote growth and productivity,14 the industry has not fully embraced hydrolysates as a serum substitute. Primarily this has been because of a lack of chemical definition and lot-to-lot variability leading to process and product inconsistencies. Currently, manufacturers of hydrolysate supplements are addressing these concerns through novel enzymatic techniques and more refined processing to produce a more consistent product.15

Albumin

Albumin, in the form of bovine or serum albumin (BSA, HSA) is commonly used in cell culture media formulations for nutrient transport. SFM is frequently supplemented with serum albumin as a carrier for fatty acids, lipids, amino acids, and trace elements. Additional advantages of albumin as a cell culture supplement include its ability to bind toxic components present in culture and protect against mechanical damage such as shear stress in agitated cell culture systems. The successful replacement of BSA or HSA in SFM with recombinant forms of albumin or synthetic compounds such as pluronic has been achieved, however, requirements for albumin vary depending on the cell line. For example, the myeloma cell line, NSO, lacks the functional pathway for cholesterol synthesis and therefore requires cholesterol. Albumin has been used as a carrier of cholesterol, although cyclodextrins have been used as alternative carriers of cholesterol and other lipids in culture media.

In recent years, a variety of recombinant animal-free forms of albumin (rHA) have become commercially available. Up and coming areas requiring commercial cell culture processes, such as advanced tissue and stem cell therapies and regenerative medicine, are areas where rHA is likely to prove a compliant and consistent alternative to current albumin sources.16 Recombinant albumin, such as CellPrime rAlbumin AF-S (Millipore, Billerica, MA), and Recombumin (Novozymes, Bagsvaerd, Denmark), produced in Saccharomyces cerevisiae has been shown to be structurally identical to native albumin. Safety, tolerability, pharmacokinetics, and pharmacodynamics also have been studied, showing equivalence to native human albumin.17


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

EMA Warns of Falsified Herceptin Vials
April 16, 2014
Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
PhRMA Report Reveals Growth Trajectories and Policy Factors Affecting Biopharmaceutical Growth
April 11, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here