Harvest and Recovery of Monoclonal Antibodies from Large-Scale Mammalian Cell Culture - Comparing primary harvest techniques adopted in commercial-scale operations for monoclonal antibody products. -


Harvest and Recovery of Monoclonal Antibodies from Large-Scale Mammalian Cell Culture
Comparing primary harvest techniques adopted in commercial-scale operations for monoclonal antibody products.

BioPharm International
Volume 21, Issue 5


The appropriate combination of harvest and clarification unit operations for mammalian cell culture harvest is obviously scale- and facility-dependent. Preferences also have evolved with increasing experience with scale-up of certain unit operations.

The early 1990s saw significant focus on MF-based harvest strategies because centrifugation was considered a significant capital investment and experience with controlling the shear exerted on mammalian cells was limited. Over time, better centrifuge design and efforts by both leading vendors (Westfalia and Alfa Laval) to optimize operating conditions for biopharmaceutical cell culture broths have resulted in this becoming the predominant harvest technique for cell culture facilities over a 2,000-L scale.

Also, the capital investment in large-scale centrifuges is no longer seen as cost prohibitive in multiproduct production facilities because the operating expenses with membranes for MF are significantly higher and the centrifuges can be easily changed over from one product to another.32 Disk stack centrifuges, on the other hand, are easier to clean and operate in a sanitary fashion than large-scale MF housings are. Bioburden control and cleaning validation also are simpler for centrifuges than for MF systems because the latter have complex flow paths which lead to the possibility of dead zones that can harbor microbial growth.

Unlike MF, which provides a clean filtrate stream, the use of centrifuges does, however, imply the need for a secondary clarification step. This niche is most commonly filled in MAb manufacturing processes by depth filtration. Large-scale depth filtration now can be readily scaled up with process-scale housings and disposable filter modules. Recent work with flocculants and filter aids might further increase the throughput of this step. It is rare to see depth filtration as the sole harvest technique beyond smaller production scales (e.g., a few hundred liters).

Terminal clarification is almost always provided by in-line filtration through microfilters with an absolute pore size rating. These terminal filters ensure a particle-free feedstock for the capture chromatographic step.

Figure 5. Common harvest and clarification schemes for large-scale mammalian cell culture harvest
Harvest and clarification schemes for MAb production processes today (Figure 5) are the product of much evolution and evaluation carried out over the last 15 years. Harvest techniques for mammalian cell culture systems are now routinely expected to operate with high yields (>98%) and minimal cell disruption. The high titers that can now be achieved in cell culture operations mean that the challenge has now moved further downstream to improve purification throughput. This also implies that the current cell culture scales are likely to stay with us over the next decade. Instead of radical changes to the way harvest and clarification are carried out, improvements are likely to be in the form of gains in efficiency and throughput and improved understanding of existing unit operations.


The authors would like to acknowledge many Bristol-Myers Squibb employees in the departments of manufacturing sciences, process sciences, and manufacturing operations at the Syracuse, NY, site for contributing to the development of robust harvest operations for several mammalian cell culture products. We also thank Dr. Steven S. Lee, VP and GM, for supporting this review.

This is an excerpt from the chapter in the forthcoming John Wiley and Sons book, Process Scale Purification of Antibodies, edited by Uwe Gottschalk.

Abhinav A. Shukla is an associate director of Manufacturing Sciences, and Jagannadha Rao Kandula is a process engineer of Manufacturing, both at Bristol-Myers Squibb, Co., East Syracuse, NY, 315.431.7926,

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here