Optimizing the Primary Recovery Step in Nonaffinity Purification Schemes for HuMAbs - An alternative approach to traditional Protein A schemes is comparable in overall process efficiency, product reco


Optimizing the Primary Recovery Step in Nonaffinity Purification Schemes for HuMAbs
An alternative approach to traditional Protein A schemes is comparable in overall process efficiency, product recovery, and quality.

BioPharm International Supplements

As primary recovery TFF is a partial purification step, it aids in reducing the demand of host cell contaminant removal during CEX chromatography. These two-step operations provide efficient purification fold. Primary recovery TFF with ~90% or above process step recovery, along with CEX capture, were comparable to Protein A schemes in overall process recovery.

Assuming the polishing steps are similar for both CEX and affinity schemes, which is the case for HuMAbs, there are more cost advantages for processing the same amount of HuMAbs for a nonaffinity scheme over a protein A scheme. By developing optimal process conditions, the binding capacity of current leading cation exchange resins can reach several-fold over Protein A resins (Table 1). With a much cleaner load on the cation exchange, the resin lifetime is well maintained to easily reach more than 100 cycles. Cation exchange capture also provides hidden advantages if there is a need to change the resin because of longer schedule interruption during product campaigns or an unforeseen new resin need during storage in large-scale manufacturing.

An ion exchange purification process for HuMAbs provides an alternative approach to traditional Protein A schemes, and is comparable in terms of process consistency, time, product recovery, and quality.


Capture load conditioning for cation exchange is performed by a TFF operation, which can provide several advantages, such as batch volume reduction and partial purification. Furthermore, the TFF bulk provides a better environment and builds flexibility as a process storage intermediate during manufacturing. Different process parameters that seem to influence the concentration and diafiltraion stages of primary recovery are discussed to design efficient and scalable nonaffinity purification scheme for HuMAbs.

JUE (MICHELLE) WANG is senior manager, TIMOTHY DIEHL is a scientist, MARK WATKINS-FISCHL is a scientist, DEBORAH PERKINS is a scientist, and DEENA AGUIAR is a scientist, all of Purification Process Development, and ALAHARI ARUNAKUMARI is the senior director of Process Development, all at Medarex, Bloomsbury, NJ, 908.479.2451,


1. Arunakumari A, Wang J, Ferreira G. Improved downstream process design for human monoclonal antibody production. BioPharm Int. 2007;Feb supp:36–40.

2. Ferreira GM, Dembecki J, Patel K, Arunakumari A. A two-column process to purify antibodies without Protein A. BioPharm Int. 2007;20(5):32–43.

3. Sofer G, Chirica LC. Improving productivity in downstream processing. BioPharm Int. 2006;19(11):48–55.

4. Wakankar AA, Borchardt RT. Formulation considerations for proteins susceptible to Asparagine deamidation and Aspartate isomerization. J Pharm Sci. 2006;95(11):2321–2336.

5. Rathore AS, Wang A, Menon M, Martin J, Campbell J, Goodrich E, Riske F. Optimization, scale-up, and validation issues in filtration of biopharmaceuticals, part 2. BioPharm Int. 2004;17(9):42–50.

6. Rathore AS, Samavedam R, Morrison R, Kichefski T, Cote S. Lifetime studies for membrane reuse: principles and case studies. BioPharm Int. 2007;20(9):48–54.

7. Hodge G. Disposable components enable a new approach to biopharmaceutical manufacturing. BioPharm Int. 2004;17(3):38–49.

8. McCormick D. Bioseparations look ahead to the past. Pharm Technol. 2005;29(7):36–44.

blog comments powered by Disqus



FDA Panel Unanimously Backs Secukinumab for the Treatment of Psoriasis
October 22, 2014
Roche to Expand and Improve its Basel Site
October 22, 2014
Pall ForteBio Releases Bioprocessing Contamination Detection Kit
October 22, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Amgen Sues Sanofi and Regeneron over Patent for mAb Targeting PCSK9
October 20, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here