Evaluation of Dendritic Cell Products Generated for Human Therapy and Post-Treatment Immune Monitoring - - BioPharm International


Evaluation of Dendritic Cell Products Generated for Human Therapy and Post-Treatment Immune Monitoring

BioPharm International
Volume 21, Issue 3


Dendritic cell (DC) products for cancer patient therapy are being used in clinical trials to enhance anti-tumor immune responses, which are often compromised in patients with advanced disease. DC therapies are also being used in patients with post-transplant graft versus host disease (GVHD) or patients with infectious diseases.15,16,18 Studies in animal models of autoimmunity suggest that in the future, adoptive transfers of tolerogenic DCs may be beneficial to patients with autoimmunity.17 DC-based therapies are nontoxic, but their clinical efficacy has not been confirmed.54 In part, this result might reflect the complexity of DC production processes and the lack of universal criteria for quality and release of therapeutic DC products. Currently, manufactured DC products are phenotypically and functionally variable, and products made in different laboratories are not comparable. Although this might be due to the source and functional competence of DC precursors in cancer patients, differences in production methods clearly contribute to DC product variability. To standardize DC production, several manufacturing issues must be addressed, including the selection of media and conditions for DC culture, the composition of maturation cytokines, and the choice and standardization of assays used.

As more information is being generated about the biologic characteristics of DCs, significant changes in the manufacturing process are being made. At the same time, DC products generated for therapy must meet predefined criteria for sterility, viability, purity, and stability. These products also must be defined phenotypically and functionally, and strict attention should be paid to their activation and maturation status, as those characteristics likely correlate with clinical endpoints.

Reliable production of biologically active, clinically effective DC products with defined potency will require modifications of current methods, including the use of semi-automatic culture devices for clinical-scale production, the addition of novel cytokines, and the introduction of improved antigen uptake methods. Equally important to the future success of DC-based therapies is monitoring of patients' immune responses after vaccination. Immune monitoring of DC-based cancer vaccines is essential for establishing correlations between clinical endpoints and tumor-specific as well as vaccine-specific immunity. Although elusive, such correlations have been increasingly frequently reported in recent cancer vaccination trials,55,56 perhaps because of more sophisticated vaccine designs or improved quality of immune monitoring. Today, many ex vivo assays are available to be used as monitoring tools, and the selection of a robust assay that will reliably measure the frequency and/or activity of epitope-specific T cells in the peripheral circulation or patients' body fluids is critical for success. In general, recent emphasis has been on measuring tumor antigen-specific humoral and cellular responses in single cell assays. These and other DC functional assays represent a special challenge, because specimen cryopreservation and batching used in serial monitoring often interfere with cellular functions. Standardization and the selection of robust, reliable monitoring methods used in the setting of an established quality control program are the key to successful evaluations of DC-based cancer vaccines.

Theresa L. Whiteside, PhD, is a professor at the University of Pittsburgh Cancer Institute and director of the Immunologic Monitoring and Cellular Products Laboratory (IMCPL), Pittsburgh, PA, 412.624.0096,

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here