Analytical Method Maintenance - Several steps can be taken to maintain test method suitability after the formal completion of the analytical method validation studies - BioPharm International

ADVERTISEMENT

Analytical Method Maintenance
Several steps can be taken to maintain test method suitability after the formal completion of the analytical method validation studies


BioPharm International


The (hypothetical) historical results are presented in Table 2. The estimated probabilities for cases 1A and 2A, and the measurement errors ("invisible" component of SPC) are given in Table 3 along with probability estimates for the worst-case scenario when AMT results would reveal that the receiving laboratory will test at a bias at the acceptable AMT protocol limit of plus or minus 1.5%.

Although simplified, several observations can be made from the data in Figure 1 and Table 2. Most important, the overall process performance is out of a desirable plus or minus 3 s.d. SPC state. As said earlier, this is the "visible" SPC trigger that warrants action when limits are exceeded. The test system has recently (last n = 60) yielded higher (2.0%) results for the assay control. The assay control is the same molecule in a highly similar matrix as the test sample and both are run simultaneously in each assay run.

The "visible" process mean can therefore be expected to be about 2.0% higher. Looking chronologically at the assay control may show the root cause, that is, which assay component was changed and caused this difference over time. Alternatively, several smaller changes could have added up to this difference of 2.0%. For example, the reference standard may unknowingly be unstable even when frozen and may have lost 2.0% potency over time, providing proportionally higher (2.0%) results to the assay control and test samples.


Table 3. Estimates of release probabilities and measurement errors (cases 1A–2B) for AMT
Although the 2.0% expected difference in process data may be buried in small sampling or production changes, it nevertheless constitutes a 2.0% bias for testing from the time that specifications were set to match clinical data, and the then-existing process variance (PV) and AMV.

The estimate for the overall sampling process during production (from PV) is used to estimate the actual variance in process performance. However, if small- or large-scale process studies to estimate sampling variance were not done well or are no longer representative, this estimate may not be sufficiently accurate to provide a good estimate for the actual PV (using Equation 1). In the hypothetical example, the estimated true PV (2.0%) is smaller than the estimated sampling variance (2.3%), and smaller than the assay variance (3.0%) and always smaller than the overall "visible" process variance (4.3%). This may have been why the specifications had been set to 90–110 units in the first place. Often, the assay and sampling variance could indeed be greater than the actual process variance for downstream inprocess potency testing for biopharmaceuticals because of various reasons. Some examples are listed below:

  • Protein adsorption losses (sampling, testing).
  • Sampling procedures lacking detail where needed.
  • Inappropriate sample handling before testing.
  • Poorly set test system suitability criteria.
  • Insufficiently monitored and controlled assay reproducibility.
  • Poorly developed or optimized test method.
  • Poorly written AMV protocol.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

FDA Panel Unanimously Backs Secukinumab for the Treatment of Psoriasis
October 22, 2014
Roche to Expand and Improve its Basel Site
October 22, 2014
Pall ForteBio Releases Bioprocessing Contamination Detection Kit
October 22, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Amgen Sues Sanofi and Regeneron over Patent for mAb Targeting PCSK9
October 20, 2014
Author Guidelines
Source: BioPharm International,
Click here