Optimized Vaccine Development and Manufacturing: A Technology Overview - Certain technology solutions can greatly improve the vaccine manufacturing process. - BioPharm International


Optimized Vaccine Development and Manufacturing: A Technology Overview
Certain technology solutions can greatly improve the vaccine manufacturing process.

BioPharm International

Toward Shorter, More Accurate Testing Times

Improving analytical methods during development and production will aid in optimizing process parameters, improve safety and efficacy, and reduce batch release times. Label-free interaction analysis based on surface plasmon resonance (SPR) provides rapid product characterization and unique data to support critical decisions at every step of the vaccine development and manufacturing process. For example, much emphasis is now being placed on developing effective vaccines against many influenza types and this requires analysis of the product and control of the breadth of immune responses elicited by such vaccines.

SPR-based interaction systems deliver kinetic data (on and off rates) by monitoring binding events in real-time, providing greater insights into protein function than from end point assays such as enzyme linked immunosorbent assay (ELISA). Label-free interaction analysis also can be used to provide accurate concentration measurements. The interaction occurs close to a sensor surface on which changes in mass concentration are detected, eliminating the need for labels, which may interfere with the interaction properties.

These systems have also been applied to immunogenicity studies using untreated serum where the build-up of a strong antibody response mechanism is desired. In one study, an immunization regime designed to elicit an anti-IgE response was optimized during the development of an immunotherapeutic against allergy and asthma.3 Data from SPR-based analysis have been shown to be more reproducible than techniques such as ELISA and more information (kinetic quality assessment) can be derived from a single interaction. The ability to detect low–medium affinity antibodies means that immune responses can be detected earlier.

SPR-based systems are widely applicable throughout the vaccine development and production process (see, for example, the work from NVI),6 potentially replacing more tedious methods such as bioassays and in vivo tests.

Rapidly Acquired High Data Quality

The benefits of SPR-based systems have led many pharmaceutical and vaccine producers to consider these systems for product characterization tests to reduce testing times. The replacement of a traditional mouse IgG ELISA assay with an SPR-based test system can reduce the time per assay run from 7 to 2 hours and ultimately shorten the production workflow by one day.4 More importantly, studies comparing the accuracy of IgG ELISA assays with an SPR-based system in the analysis of monoclonal antibody (MAb) response in serum revealed a 10-fold improvement in terms of the coefficients of variance.5 These numbers emphasize the potential and relevance of SPR-based systems in batch-release testing of vaccines where a higher accuracy in testing the final vaccine efficacy would significantly contribute to improved process economics and dose-saving strategies—both of which are a particular concern in influenza batch-release.

Upstream Process Development That Reduces Capital Expense

The motivation to shift from egg-based to cell-based production capacity results primarily from the fact that egg-based capacity cannot be scaled up further in times of emergency, largely because of its reliance on specially prepared and treated eggs. In contrast, cells can be frozen in advance and large numbers may be grown quickly. Capacity can also be increased by adding fermenting equipment. The footprint for cell culture-based vaccine production is considerably smaller, and processing takes place in closed systems. Cell-based influenza vaccines also provide an option for people who are allergic to eggs and are therefore unable to receive currently-licensed vaccines.7,8,9

The productivity of large-scale cell culture can be increased either by scaling up to larger volumes with cell densities of 2–3 x 106 /mL, or by intensifying the process in smaller volumes but with higher cell densities (up to 2 x 108 cells/mL). When intensifying cell densities, more frequent media changes are needed and perfusion is eventually applied.10

Many alternative technologies are available. Cross-linked dextran beads (microcarriers) provide an extended surface and a stable environment for optimal cell growth. Microcarrier culture of anchorage-dependent or entrapped cells reduces volume and thus belongs to the latter of the options cited above.1 The technique in general has many advantages for the commercial manufacturer. It can be operated in batch or perfusion modes during cell culture and is well-suited to efficient process development and smooth scale-up. Washing and changing culture media just before viral infection is easier. The reactors can also be modified to grow other organisms.

blog comments powered by Disqus



Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Amgen, Sanofi, and Ono Pharmaceuticals Partner with Universities on Transmembrane Protein Research
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Novartis Sells Influenza Vaccine Business to CSL for $275 Million
October 27, 2014
Author Guidelines
Source: BioPharm International,
Click here