An Improved Manufacturing Process for a Recombinant Polyprotein Vaccine - Combating the devastating global disease of leishmaniasis with a new therapeutic and prophylactic vaccine - BioPharm

ADVERTISEMENT

An Improved Manufacturing Process for a Recombinant Polyprotein Vaccine
Combating the devastating global disease of leishmaniasis with a new therapeutic and prophylactic vaccine


BioPharm International



Figure 1
The Infectious Disease Research Institute (IDRI) has developed a prophylactic vaccine for cutaneous leishmaniasis by constructing a recombinant fusion protein consisting of portions of three Leishmania proteins: thiol-specific antioxidant (TSA),15 Leishmania major (L. major) stress-inducible protein 1 (LmSTI1),16 and Leishmania elongation initiation factor (LeIF).17 The schematic of this construct is shown in Figure 1. The recombinant approach was preferable to live vaccine or a killed parasite vaccine. Live vaccination is being discontinued because of undesirable side effects,18 and the manufacturing process of a killed parasite vaccine presents many difficulties relating to reproducibility, the need for animal-derived products in the culture medium, and variability in potency. The recombinant approach lends itself to the production of an inexpensive and effective vaccine at large scale, and if efficacious, would drastically reduce the morbidity and mortality caused by Leishmania throughout the world.

The original form of this vaccine was manufactured under current good manufacturing practice (cGMP) conditions, is currently undergoing human clinical testing, and will ideally provide a lasting protective immunological response. To simplify manufacturing, several subtle process improvements included removal of a 6-histidine sequence near the amino terminus, and the mutation of a proteolytic hot spot. The improved manufacturing method consists of fermenting an engineered version of the HMS-174 strain of Escherichia coli (E. coli) following cGMP regulations at the 30-L scale. A purification scheme combining anion exchange chromatography with hydroxyapatite chromatography was developed that yielded purified protein product at greater than 100 mg/L. The purified protein was formulated and lyophilized to yield a stable cake that can safely be sent to clinical trials worldwide. The cGMP-manufactured product was tested with the adjuvant monophosphoryl lipid A in stable emulsion (MPL-SE) in a murine potency assay. The Leish-110f recombinant protein product reported here is an improved version of the original leishmaniasis vaccine.

Materials and Methods

Master and Working Cell Banks


Figure 2
Master and working cell banks were manufactured under cGMP conditions at Charles River Laboratories (Malvern, PA). The cell banks were tested for purity, viability, and identity and are stored as frozen stocks in glycerol at –80 C. The flow chart of fermentation and purification is shown in Figure 2.

Fermentation

Both the inoculums and the fermentation used 2XYS as the growth media, with dextrorotatory glucose (D-glucose) as the primary carbon source, to grow the recombinant E. coli in a fed-batch fermentation. The fermentor was programmed to control the pH at 7.0 and dissolved oxygen at 30%. When the optical density at 600 nanometers had increased to 8 + 1, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to the fermentor to a final concentration of 1 mM to induce expression of the recombinant gene encoding the Leish-110f protein. At three hours post-induction, the culture was harvested by centrifugation.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
Manufacturing Issues Crucial to Combating Ebola
November 20, 2014
FDA Requests Comments on Generic Drug Submission Criteria
November 20, 2014
USP Joins Chinese Pharmacopoeia Commission for Annual Science Meeting
November 20, 2014
Author Guidelines
Source: BioPharm International,
Click here