Biotech Manufacturing Grows Up - The industry, now 30 years old, is undergoing an important transition. - BioPharm International


Biotech Manufacturing Grows Up
The industry, now 30 years old, is undergoing an important transition.

BioPharm International
Volume 20, Issue 10

Operator preparing to load excipient to process vessel during formulation process (Wyeth Biotech)
The biotechnology industry has faced many challenges since its inception in the late 1970s. The ability to translate new discoveries into viable therapies that could be produced on a large scale and delivered to patients across the globe required overcoming many hurdles. Biopharmaceutical manufacturing, in particular, has presented major challenges, even to the industry's leaders. In addition to the inherent difficulties associated with a production platform based on molecular and cellular biology, biopharmaceutical manufacturing always has been subject to the vicissitudes of unpredictable clinical trials, regulatory requirements, product approvals, and market demand. When we add to this the need to invest in expensive manufacturing facilities before product approval, the challenges take on the multiple dimensions of technology, logistics, and economics.

Perhaps it is reassuring that corporations, even entire industries, undergo discrete stages of development, from uncertain beginnings to a more predictable maturity. Eventually, novel and unique technologies evolve to become robust and economically viable. Although the biopharmaceutical industry is only 30 years old, it has already graduated through several stages of development and is currently undergoing an important transition. We are on the cusp of a manufacturing renaissance where companies will have the ability to produce biopharmaceuticals consistently at high yields, respond rapidly to shifts in demand and development cycles, and lower investment in production infrastructure. These changes are being driven technically, by advances in biological and process engineering, as well as economically, through facility sharing and utilization. As a result, we believe that the fundamentals of the biotechnology industry will change dramatically, resulting in product costs and flexibility equal to those currently achieved for small-molecule pharmaceuticals. Progress in biopharmaceutical manufacturing will have far-reaching consequences for industry dynamics and competitive strategies. The three drivers for this transition are:

  • increased production yields through process development and biological science instead of hardware solutions
  • standardization of facilities and processes
  • broad implementation of common platform technologies.

Michael E. Kamarck
A similar transition occurred in the semiconductor industry. The dramatic improvements in semiconductor manufacturing brought about by facility and process standardization, platform technologies, and scientifically based product improvements, led to rapid growth and lower costs in that industry beginning in the mid-1980s.


Quick Recap
To get a better idea of where the biotechnology industry is situated on its path toward maturity, let's take a look at its history so far. The biotechnology industry first emerged with the advent of recombinant DNA technology, a tool that enabled scientists to envision the mass production of therapeutic proteins. Insulin, human growth hormone, hemophilia proteins, and erythropoietin were among the first protein products that were developed into biopharmaceuticals, replacing or augmenting biological pathways that had become dysfunctional through disease. These proteins were followed by the introduction of monoclonal antibodies, which could act as antagonist drugs, targeting biological molecules in a variety of disease pathways. While both types of biopharmaceuticals are of continuing importance, monoclonal antibodies have been driving the industry for the past decade.

The early years of biopharmaceutical production saw scientists evolve into engineers, inventing production equipment, control systems, and analytical technology that simply did not exist in a pharmaceutical industry based on developing medicines from small chemical compounds. Unlike small-molecule drugs, protein-based drugs were produced by living cells; manufacturing cell lines had to be established and then grown under conditions that promoted viability and high cell densities. Finally, the cells needed to be separated from their products and the protein purified aseptically. The core technology used to produce and purify the protein-based drugs varied among companies and manufacturing plants. In the industry, the initial focus was on making new products, not production efficiency, and demand quickly outstripped the capacity to supply.

blog comments powered by Disqus



FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here