Evaluation of an Instantaneous Microbial Detection System in Controlled and Cleanroom Environments - - BioPharm International


Evaluation of an Instantaneous Microbial Detection System in Controlled and Cleanroom Environments

BioPharm International
Volume 21, Issue 9

1) Investigations: If conventional environmental monitoring methods show unexpected elevated levels of microbiological contamination, or if media fill results in an aseptic area yield one or more positive vials, the IMD-A system would be a valuable tool to immediately assess the environment. Assuming the microbiological contaminants were still present 5–7 days later (which is not always the case), the IMD-A could help locate the contamination and ascertain its cause to facilitate corrective action. The IMD-A can also check the effectiveness of corrective actions during investigations in real time before operations are resumed.

2) Reduction of shutdown time: Currently, conventional environmental monitoring methods verify that an area has returned to its validated state after being shut down for repairs or renovations. Such environmental monitoring data determine when to restart the operation. In an aseptic environment, they are used to determine when to perform media fills. The IMD-A could supply information about the environment rapidly, reducing the risk of performing media fills before the environment has returned to normal. In combination with conventional environmental monitoring and media fill data, the IMD-A could provide additional information to collectively assess the risk of resuming operations faster than with competing methods.

3) Training: The IMD-A's ability to provide immediate feedback can be helpful to assess how an operator's movements in an aseptic environment could affect the product. This feedback can provide information about whether or not an operator is ready to be trained using conventional environmental monitoring data and media fills.

4) Modification of aseptic process: The IMD-A could also be used to determine how a change might affect the environment. For example, if we want to change the way an intervention to clear a blockage in the fill line is performed, the IMD-A can assess which method generates the least risk to the process, thereby reducing the risk of failure when the intervention is performed in media fills before use in routine operations.

In the examples provided above, we have been careful to point out that the IMD-A can be used for additional information, but that it is not the official system for environmental air monitoring. At Bayer, we are exploring the use of the IMD-A for these purposes while pursuing additional studies and the question of what will it take to replace environmental monitoring of air with the IMD-A. Answering this question promises the biggest future benefit—the ability to determine when an aseptic environment is not performing acceptably and using real-time data to make immediate decisions about product manufacturing. We feel that the IMD-A will have positive effects on our industry, helping us continue to provide safe and effective products.

Vishvesh K. Bhupathiraju, PhD, is the manager of QC Microbiology at Bayer HealthCare, Berkeley, CA. At the same company, Brandon Varnau is QC director and can be contacted for more information about these studies at 510.705.7609,
Jerry R. Nelson, PhD, is a specialist microbiologist at Nelson Laboratories, Salt Lake City, UT. J. P. Jiang is chief technology officer at BioVigilant Systems, Inc, Tucson, AZ. At the same company, Chuck Bolotin is the vice president of business development, marketing, and sales, and can be contacted for all questions related to BioVigilant at 520.498.0427,


The authors would like to acknowledge Shayna Zucker, Peter Nilsson, Jerry Ho, and Alan Chen for assistance with studies in the cleanroom environment and Lisa Yonocruz for assistance with ScanRDI analysis. The authors would like to acknowledge Nelson Laboratories and the US Army's Dugway Proving Ground for their microbial barrier test chambers and for their assistance during this study.


1. Moldenhauer J. Environmental monitoring, a comprehensive handbook. Bethesda, MD: PDA; River Grove, IL: DHI Publishing, LLC; 2005.

2. Brailsford MA, Jones D. Real-time environmental monitoring procedures. Pharm Manufacturing Rev. 1999;11(3):16–17.

3. Jiang JP. Environmental monitoring using an instantaneous microbial detector. In: Moldenhauer J, editor. Environmental monitoring, a comprehensive handbook. Bethesda, MD: PDA; River Grove, IL: DHI Publishing, LLC; 2005. p. 303–412.

4. Tempuro G, Garrido D, D'Aquino M. Comparative study of airborne viable particle assessment methods in microbiological environmental monitoring. J Pharm Sci Technol. 2004;58(4):215–221.

5. Marthi B. Resuscitation of bioaerosols. In: Lightart B, Mohr AJ, editors. Atmospheric microbial aerosols. New York: Chapman and Hill; 1994.

6. Heidelberg JF, Shahmat M, Levin M, Rehman I, Stelma G, Grim C, Colwell RW. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl Environ Microbiol. 1997;63:3583–3588.

7. Roszak DB, Colwell RR. Survival strategies of bacteria in natural environments. Microbiol Rev. 1987;51:365–379.

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here