Vaccine Characterization Using Advanced Technology - Mass spectrometry offers the potential for an unprecedented understanding of vaccines and why they fail. - BioPharm International

ADVERTISEMENT

Vaccine Characterization Using Advanced Technology
Mass spectrometry offers the potential for an unprecedented understanding of vaccines and why they fail.


BioPharm International


Abstract:

The development of safe, effective, and affordable vaccines has become a global effort due to its vast impact on overall world health conditions. In this paper, a brief overview of vaccine characterization techniques, especially in the area of high-resolution mass spectrometry, is presented. It is highly conceivable that the proper use of advanced technologies such as high-resolution mass spectrometry and nuclear magnetic resonance, along with the appropriate chemical and physical property evaluations, will yield tremendous in-depth scientific understanding for the characterization of vaccines in various stages of vaccine development. In addition, this approach can potentially be more efficient and effective for supporting vaccine research and development.


cGMP Laboratory of PPD
New initiatives, strategic planning, and guidance from the World Health Organization (WHO), the US Food and Drug Administration, the European Union and other regulatory bodies, through collaborations with industry and academia, have resulted in an increasing level of scrutiny of biologically based pharmaceuticals such as vaccines.1–14 The Draft FDA Guidance for Industry, "Characterization and Qualification of Cell Substrates and Other Biological Starting Materials Used in the Production of Viral Vaccines for the Prevention and Treatment of Infectious Disease," indicates a trend in this direction. Characterizing these drug products is becoming increasingly important in bringing a new vaccine to the market, since this information helps to define the vaccines' safety and efficacy. Modern mass spectrometric (MS) methods for characterizing vaccines provide many advantages relative to the more classical characterization techniques that have been historically employed. Additionally, this technology has applications in all phases of vaccine development.

The development of safe, efficacious, and affordable vaccines is the main focus of multiple government agencies, the WHO, industry, academia, health care providers, the public, and philanthropic organizations such as the Bill and Melinda Gates Foundation. Grants funded by the National Institutes of Health (NIH) and the Centers for Disease Control, along with pharmaceutical industry research, begin the process of developing potential vaccines. The pharmaceutical industry, with oversight from the FDA, moves these vaccines from early development to clinical trials. The involvement of the public begins with these trials and continues throughout the useful lifespan of the vaccine. Health care providers and the public provide vital feedback regarding vaccine effectiveness and complications that are then used to improve the vaccines further.

Background

In general, vaccines are a very heterogeneous group of preventative medicines with an increasingly wide variety of adjuvants used in their formulation. Some of these adjuvant components can cause unwanted side reactions in the vaccinated individual that in some cases can result in serious complications. These complications are generally monitored as part of the potency and toxicity testing of vaccines in animal or other cell-based models, and are the surveillance responsibilities of health care providers once the vaccines are released. As greater characterization of vaccines becomes more prevalent, it may be possible to connect structural changes in the vaccine components with lost potency and increased toxicity issues. This, in turn, may provide a better understanding of how certain vaccines function and interact with the immune system. Information gained in this area will undoubtedly improve the effectiveness and safety of future vaccines above today's already high standards.

Vaccines can be broken down into three major categories: live vaccines, killed or attenuated vaccines, and component vaccines. The third type, the component vaccines, are generally the most easily characterized of the three. They usually consist of a relatively small number of immunogenic molecules and an adjuvant system, which is often well defined. The other two vaccine types include complex biological components such as attenuated or killed viruses and intact bacteria or multiple bacterial components. The characterization of these vaccines typically focuses on the adjuvants used to improve effectiveness. Advances in proteomics make the characterization of even these difficult vaccines more manageable.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Novartis Reports Positive Results for Secukinumab in Ankylosing Spondylitis Trials
October 23, 2014
Pall ForteBio Releases Bioprocessing Contamination Detection Kit
October 22, 2014
Roche to Expand and Improve its Basel Site
October 22, 2014
FDA Panel Unanimously Backs Secukinumab for the Treatment of Psoriasis
October 22, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Author Guidelines
Source: BioPharm International,
Click here