Disposable Bioreactors Based on Wave Agitation Technology - Disposable bioreactors save costs in time and capital by reducing the time-to-market needed for cell cultivation processes. - BioPharm


Disposable Bioreactors Based on Wave Agitation Technology
Disposable bioreactors save costs in time and capital by reducing the time-to-market needed for cell cultivation processes.

BioPharm International

Bioreactors for cultivating mammalian cells are typically aerobic bioreactors and oxygen is usually a limiting nutrient because of its low solubility in culture media. When bioreactors are scaled up from laboratory to production size, their design must meet both oxygen distribution and oxygen mass transfer requirements.

One engineering parameter that could be used to compare the newly developed disposable bioreactors with established stainless steel cell-culture bioreactors could be the oxygen transfer rate (OTR). Because of its low solubility, only 0.3 mM O2, equivalent to 9 mg/L, dissolves in one litre of water at 20 C in an air/water mixture. This amount of oxygen will be depleted in a few seconds by an active and concentrated growing culture unless oxygen is supplied continuously. In contrast, during the same period the amount of other nutrients used is negligible compared with the bulk of concentrations. Therefore, most aerobic processes are oxygen-limited. This is the reason why the concept of gas–liquid mass transfer in bioprocesses is centered on oxygen transfer even if other gasses such as carbon dioxide, hydrogen, methane and ammonia can also be involved.

The mass transfer of oxygen into liquid can be characterized by the OTR or by the volumetric oxygen transfer coefficient (KLa). The larger the KLa, the higher the aeration capacity of the system. These values have been thoroughly examined as a critical parameter for bioreactor function.


Figure 4. Disposable system approach.
Disposable bioreactors with wave agitation are used for commercial and R&D applications for the production of cell-derived products using animal, insect, plant and virus cultures in good manufacturing practice (GMP) and non-GMP applications. Because of their flexibility, single-use cultivation bags are especially suitable for screening new cell lines, media optimization and vaccine production. Basically, two strategies can be implemented when considering the use of disposable bioreactors:
  • A partially disposable strategy; for example, preparation of inoculum in disposable cultivation bags for process-scale cultivation in conventional stirred tank reactors (Figure 4).

Figure 5. Disposable system approach.
  • A completely disposable strategy, where inoculum as well as plant bioreactors are disposables based on the rocking-motion principle (Figure 5).

Table 2. Oxygen uptake rate values for mammalian cells and E. coli.
In addition, the use of multiple large-scale disposable bioreactors instead of one conventional stirred tank reactor can be considered, particularly in view of their ease-of-use and process safety against contaminations of disposable bioreactors. Finally, the parameter that will document the merits of using conventional bioreactors or disposable bioreactor systems for biotechnology processes are yield of production, expenditure of time and process costs.8 The cultivation of yeast and aerobic microorganisms is, however, a challenge in disposable bioreactors. As shown in Table 2, because of the published Kla or OTR values, it is unlikely that a wave agitated system can be used for the most common microbial expression systems because of the Kla or OTR values inherent in this method.

Even if the market for disposable bioreactors has grown rapidly in recent years, full acceptance will only be reached when the entire production process from media preparation, inoculum preparation and downstream processes can be done using disposable equipment. Some suppliers are focusing on this issue to become a total solution provider for disposable biotech factories.

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here