Applying Fusion Protein Technology to E. coli - Protein fusions are a leading option to produce difficult-to-express proteins, especially in Escherichia coli. - BioPharm International

ADVERTISEMENT

Applying Fusion Protein Technology to E. coli
Protein fusions are a leading option to produce difficult-to-express proteins, especially in Escherichia coli.


BioPharm International


42. Nomine Y, Ristriani T, Laurent C, Lefevre J-F, Weiss E, Trave G. A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng. 2001; 14(4):297–305.

43. Sachdev D, Chirgwin JM. Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. J. Protein Chem. 1999; 18(1):127–136.

44. Scheich C, Leitner D, Sievert V, Leidert M, Schlegel B, Simon B, et al. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis. BMC Struct. Biol. 2004, 4(1):4.

45. Rozkov A, Enfors SO. Analysis and control of proteolysis of recombinant proteins in Escherichia coli. Adv. Biochem. Engin./Biotechnol. 2004; 89:163–195.

46. Prouty W, Goldberg A. Efffects of protease inhibitors on protein breakdown in Escherichia coli. J. Biol. Chem. 1972; 247:3341–3352.

47. Talmadge K, Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc. Natl. Acad. Sci. 1982; 79:1830–1833.

48. Hogset A, Blingsom OR, Saether O, Gautvik VT, Holmgren E, Hartmanis M, et al. Expression and characterization of a recombinant human parathyroid hormone secreted by Escherichia coli employing the staphylocccal protein A promoter and signal sequence. J. Biol. Chem. 1990; 265:7338–7344.

49. Murby M, Uhlen M, Stahl S. Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Express. Purif. 1996; 7:129–36.

50. Martinez A, Knappskog PM, Olafsdottir S, Doskeland AP, Eiken HG, Svebak RM, et al. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem. J. 1995; 306:589–97.

51. Koken MH, Odijk HH, van Duin M, Fornerod M, Hoeijmakers JH. Augmentation of protein production by a combination of the T7 RNA polymerase system and ubiquitin fusion: overproduction of the human DNA repair protein, ERCC1, as an ubiquitin fusion protein in Escherichia coli. Biochem. Biophys. Res. Commun. 1993; 195:643–653.

52. Murby M, Cedergren L, Nilsson J, Nygren PA, Hammarberg B, Nilsson B, et al. Stabilization of recombinant proteins from proteolytic degradation in Escherichia coli using a dual affinity fusion strategy. Biotechnol. Appl. Biochem. 1991; 14:336–346.

53. Shen SH. Multiple joined genes prevent product degradation in Escherichia coli. Proc. Natl. Acad. Sci. 1984; 81:4627–31.

54. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. 1996; 93:12142–9.

55. Kishi A, Nakamura T, Nishio Y, Maegawa H, Kashiwagi A. Sumoylation of Pdx1 is associated with its nuclear localization and insulin gene activation. Am. J. Physiol. Endocrinol. Metab. 2003; 284:E830–40.

56. Nikaido H. Maltose transport system of Escherichia coli: an ABC-type transporter. FEBS Lett. 1994; 346:55–8.

57. Balbas P. Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol. Biotech. 2001; 19:251–267.

58. Chong S, Mersha FB, Comb DG, Scott ME, Landry D, Vence LM, et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. 1997; 192:277–281.

59. Jenny RJ, Mann KG, Lundblad RL. A critical review of the methods for cleavage of fusion proteins with thrombin and factor Xa. Protein Express. Purif. 2003; 31:1–11.

60. Carrington JC, Cary SM, Parks TD, Dougherty WG. A second proteinase encoded by a plant potyvirus genome. Embo. J. 1989; 8:365–70.

61. Baneyx F. Recombinant protein expression in Escherichia coli. Opin. Biotech. 10: 411–421.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Suppliers Seek to Boost Single-Use Technology
August 21, 2014
Bristol-Myers Squibb and Celgene Collaborate on Immunotherapy and Chemotherapy Combination Regimen
August 20, 2014
USP Center in Ghana Receives International Lab Accreditation
August 15, 2014
USP Awards Analytical Research
August 15, 2014
FDA Warns about Fraudulent Ebola Treatments
August 15, 2014
Author Guidelines
Source: BioPharm International,
Click here