Upstream Processing:Vendor Notes: Generating Stable, High-Expressing Cell Lines for Recombinant Protein Manufacture - - BioPharm International


Upstream Processing:Vendor Notes: Generating Stable, High-Expressing Cell Lines for Recombinant Protein Manufacture

BioPharm International
Volume 20, Issue 3

Under the ACE System Process, candidate cell lines are also subjected to a stability study as part of their performance testing. The final candidate cell lines are selected, based on their stability over a minimum number of generations, as well as their overall expression. Stability studies consist of maintaining cultures of the candidate cell lines in 125-mL shake flasks and passaging them twice weekly to ~3 x 105 cell/mL. At specific times throughout the study, the cells are subjected to full productivity analysis in 250-mL shake flasks to determine growth profiles, maximum titers, and specific productivities. The stability study showed that single-load and double-load candidate cell lines were stable for over 60 generations. In addition, it was shown that these candidate cell lines were stable for over 96 generations when subjected to fed-batch conditions in 250-mL shake flasks.

Rapid Generation of Candidate Cell Lines

Table 2
In this case study, the goal was to generate as quickly as possible a cell line expressing a monoclonal antibody to support pharmacological and toxicological testing, as well as early clinical development. It was estimated that a cell line expressing greater than 500 mg/L would be sufficient for these purposes. A single-load process was selected with minimal clone screening and an emphasis on generating a stable cell line in less than four months from transfection. Briefly, the Platform ACE Cell Line was targeted with an ATV containing the sequences for the heavy and light chain of an IgG4 monoclonal antibody flanked by cHS4 insulator sequences and the hygromycin resistance gene. After transfection, only 50 drug-resistant colonies were taken forward to 96-well plates and only 10 primary transfectants expanded to 24-well plates. Finally, two primary transfectants whose antibody titers were greater than 200 mg/L were selected for single-cell subcloning by limiting dilution. The resulting candidate cell line had an antibody titer of approximately 430 mg/L and was generated in under three months from transfection. This candidate cell line was shown to be stable for over 50 generations and that antibiotic selection was not required to maintain their stability. This candidate cell line was then subjected to scale-up and simple fed-batch by supplementing the basal CD-CHO medium with glucose and plant hydrolysates. Antibody titers were doubled (Table 2) in the 1.6-L fed-batch bioreactor with a significant increase in specific productivity and culture time. The antibody titer fell slightly to 660 mg/L when scaled up to the 15-L and 500-L fed-batch bioreactors. After purification, over 140 g of purified antibody was recovered from the 500-L fed-batch bioreactor and used to support the pharmacological and toxicological studies.

Auditioning of Cells for Expression

Among the key features of the ACE system is the ability to purify ACEs (loaded with the gene[s] of interest or unloaded) using flow sorting and transfer of ACEs to a variety of mammalian cells, primary cells, or cell lines1, 2, 3. This feature enables the quick use of loaded ACEs to audition host cells for improved quality of the product (e.g., desired glycosylation pattern) or enhanced quantity (e.g., improved growth or expression). To demonstrate this feature, a DG44 CHO Platform ACE Cell Line was loaded with monoclonal antibody heavy and light chains2 and candidate cell lines were generated according to the single load process. The resultant candidate cell line had a specific productivity of 12 pg/cell/day. The loaded ACE was then isolated by flow cytometry and transferred into the parental DG44 line (without the Platform ACE). The resulting cell lines containing the transferred ACE had comparable levels of antibody expression with an average specific productivity of 11.4 pg/cell/day. This demonstrated that a loaded ACE could successfully be transferred from one cell line to another without any loss of antibody expression. Furthermore, upon transfer of the same loaded ACE to a CHOK1SV cell line, the average specific productivity increased to 55 pg/cell/day. In both transfers, FISH analyses revealed intact single ACEs, demonstrating that the specific productivity differences were due to the host cell. Beyond demonstrating the difference in expression in CHO lines for this monoclonal antibody, it illustrated how a single ACE can be used to audition cell lines for a desired trait without having to separately engineer both lines from the beginning of an engineering process.

blog comments powered by Disqus



Pfizer to Acquire Vaccines from Baxter
July 30, 2014
GSK Submits EU Regulatory Filing for Malaria Vaccine Candidate
July 29, 2014
Bristol-Myers Squibb and Ono Pharmaceutical Collaborate on Immunotherapies
July 28, 2014
FDA Accepts First Biosimilar Filing
July 24, 2014
Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
Author Guidelines
Source: BioPharm International,
Click here