Technology Transfer: How to Make It a Competitive Advantage - Technology transfer should be customer focused to help align receiving site requirements with those of the sending site. - BioPharm


Technology Transfer: How to Make It a Competitive Advantage
Technology transfer should be customer focused to help align receiving site requirements with those of the sending site.

BioPharm International
Volume 19, Issue 11

This transfer road map consists of good-practice guidelines and comprehensive templates that integrate the concurrent transfer work streams of drug substance, drug product, analytical methods, and packaging requirements. The key activities for each of these work streams are aligned with good laboratory practices or current good manufacturing practices to ensure consistent and controlled manufacturing of a high-quality product. In addition, there are specific activities to address program management, documentation, and site readiness requirements. The road map is then customized to address health authority guidance based on filing and launch strategies.

The road map helps to optimize these transfer work streams and activities by:

  • Addressing potential manufacturing equipment and processing constraints in the initial process design stages
  • Ensuring that only the necessary transfer activities will be executed to avoid interfering with new product launches
  • Managing compliance and regulatory activities
  • Allocating assets more efficiently to support both ongoing production and transfer activities
  • Establishing integrated plans (key activities, dependencies, inputs/outputs, and deliverables) between the sending and receiving parties.

In the absence of such a road map, companies often grapple with technology transfer issues long after development work has been completed. Consider the example of a large biopharmaceutical organization that so far had treated its technology transfer haphazardly. As a result, the company had run into many problems, including delays in the launch of new products, suboptimal product cost structures at launch, unpredictable project timelines, and inconsistent use of resources across projects. Facing a burgeoning product development pipeline on the one hand and severe capacity constraints on the other, the company's management made technology transfer its strategic priority.

The effort paid off. After the company implemented an integrated, scalable technology transfer methodology, it achieved significant improvements in cycle times, process yield, first-time transfer success rates, and production costs. Moreover, it was able to keep technology transfer projects off the development critical path. This way, materials (e.g., clinical supplies and launch materials) were always on time for trials and new product launches. Additionally, the company's internal staff became significantly more efficient: for example, it initiated three new projects without the need for additional hiring.


In addition to a sound strategy and road map, the right transfer organization will help to ensure successful implementation. This is particularly important as transfer activities expand and become more complex. Managing the growing number of variables (locations, operational practices, different priorities, varying incentives, etc.) requires a robust governance and organizational structure. The hallmarks of such an organization include: cross-functional executive governance to facilitate rapid, informed decision making; clear functional roles and responsibilities; an effective team to drive transfer execution and knowledge transfer; and relevant performance metrics.

However, in a rush to begin execution, companies often do not take the time to establish the right capabilities up front. The symptoms of inadequate organizational capabilities include ineffectual decision-making, limited involvement of senior management, misalignment of transfer expectations, fuzzy roles and responsibilities, poor measures of transfer success, delays in transfer, and loss of knowledge between sending and receiving sites. Ultimately, these organizational shortfalls cost the companies dearly in lost revenue due to delays and rework.

Take, for example, the case of a large pharmaceutical company with multiple early-development sites supporting downstream development. Faced with mounting fiscal pressures, the company needed to increase productivity between its early- and late-stage development activities. Moreover, the company was experiencing increased development timelines because of delays in downstream development. This was caused by corporate incentives to accelerate compounds through the early stages of development without the appropriate level of rigor given to develop robust processes.

The company's existing technology transfer practices were not helping. In fact, they were contributing to poor use of resources, misalignment of expectations and incentives between sending and receiving groups, and inability to consistently meet the needs of downstream development. In addition, the processes being transferred were neither easily scalable nor economical for long-term support, and the process knowledge was poorly documented.

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here