Technology Transfer: How to Make It a Competitive Advantage - Technology transfer should be customer focused to help align receiving site requirements with those of the sending site. - BioPharm

ADVERTISEMENT

Technology Transfer: How to Make It a Competitive Advantage
Technology transfer should be customer focused to help align receiving site requirements with those of the sending site.


BioPharm International
Volume 19, Issue 11

STRATEGY FIRST

A comprehensive technology-transfer strategy has two primary purposes. First, it aligns technology transfer with broader corporate strategies and ongoing business operations for managing product life cycles. Second, it guides where investments should be made to ensure adequate process and organizational capabilities to support future product development efforts.

Like any good strategy, technology transfer should be customer-focused. This helps to align the requirements of the receiving site, such as timing objectives for scale-up and transfer, with the sending site's processes and capabilities. Customer orientation also helps ensure alignment of regulatory requirements and filing strategies.


Figure 3. Overview of technology transfer stages
To enhance the efficiency of transfers and minimize the risk of late-stage site changes, the two parties should be well matched to begin with. Successful companies strategically select sites to match their product's technology, process, and capacity requirements early in the development process. If a company wants to reduce costs, it should consider outsourcing some aspects of manufacturing and analytical testing to suitable low-cost sites. If it is transferring products that require novel equipment and technologies, it should consider early transfer of processes and methods to eliminate the risks of post-filing lot failures. And if a company anticipates that the demand for the product will increase significantly, it should choose manufacturing sites with upside capacity to avoid more transfers in the future.

Consider the example of a generics pharmaceutical company that wished to cut costs by consolidating its manufacturing base, transferring production to lower-cost locations, and improving its capacity utilization. After evaluating its options, the company decided to transfer its US manufacturing operations to two European sites. The challenge was formidable: how to transition the manufacturing of some 40 molecules—roughly half of the company's entire production volume—across the Atlantic to sites with different operational practices and culture, and little familiarity with FDA regulations? Neither the US facility nor its European counterparts had much experience managing complex transfers or expanded supply chains.

To meet this challenge, the company adopted a holistic approach. First, its board of directors established cost-savings objectives for the transfer. A steering committee, consisting of senior executives from the sending and receiving sites, was formed to determine the operating budget, resource requirements, capital investment, and timeline for realizing the cost savings. The committee helped frame the overall operational strategy, including transfer sequencing, risk mitigation, and process changes.

The transfer sequencing and prioritization strategy called for an early transfer of high-volume, high-cost products to cut costs early and ensure dual capacity at sending and receiving sites to prevent supply disruptions. To reduce the probability of unexpected technical problems down the line, the steering committee formulated a risk-mitigation strategy focused on transferring the most challenging drug potencies of a product first. The less-complicated potencies could then be transferred faster by leveraging process synergies and lessons learned from earlier transfers. In addition, the project transfer teams established guidelines to capture significant process improvements following the initial transfer. This approach was designed to ensure that no major process changes were made during the transfer, allowing the company to file a significant number of products with CBE-30 status. This status helped to accelerate the health authorities' review process and, ultimately, had the potential to reduce the time for approval of commercial manufacturing from nine to 12 months, to just one month. To implement the new operational strategy, the project transfer teams created a detailed implementation road map.

THE ROAD MAP

Typically, technology transfer occurs during one of five stages in the product's lifecycle: molecule discovery, toxicological evaluation, clinical development, scale-up and commercial manufacturing, and in-line production. Each stage involves a different type of transfer, rationale, and key participants (Figure 2).

Each stage also requires a road map to translate the transfer strategy into specific activities, to define the timing, sequence, and dependencies among these activities, and to identify the stakeholder responsibilities and deliverables.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

FDA Approves Pfizer's Trumenba for the Prevention of Meningitis B
October 30, 2014
EMA: Extrapolation Across Indications for Biosimilars a Possibility
October 30, 2014
Bristol-Myers Squibb Announces Agreement to Acquire HER2-Targeted Cancer Treatment
October 29, 2014
Contract Research and Manufacturing Organization Paragon Bioservices Raises $13 Million
October 28, 2014
Yale and Gilead Extend Sequencing Initiative
October 28, 2014
Author Guidelines
Source: BioPharm International,
Click here