Virus Removal by Filtration: Points to Consider - - BioPharm International

ADVERTISEMENT

Virus Removal by Filtration: Points to Consider


BioPharm International
Volume 19, Issue 10

Processing

It is important to ensure that conditions used during processing are within the parameters used during the scaled-down virus retention assessment studies. Because most parvovirus retentive filters exhibit a decline in virus retention ability with flow decay, it is important to ensure that flow decay during processing is comparable to that observed during retention studies. Other parameters to be monitored during processing include solution conditions, volumetric throughput, and post-production buffer flush.

CONCLUSION

Virus filtration is a critical component in the manufacture of biological therapeutics. Implementation of a virus retentive filter is one of many steps a manufacturer will take to ensure product safety. The choice of a virus filter is driven mainly by robust virus retention. Nevertheless, robust retention should be achieved as economically as possible. This brief overview of regulatory-, process-, and filter-related considerations should aid filter users in selecting the right virus filter and in initiating filter optimization studies.

Gerd Kern is technology manager, virus management solutions, for Millipore SAS, 39, route industrielle de la Hardt, 67120 Molsheim,France, +33.(0).3.90.46.93.00, fax: +33.(0).3.90.46.91.93,

Mani Krishnan is program manager, virus and biomolecular clearance, for Millipore Corporation, 80 Ashby Road, Bedford, MA 01730, 800.645.5476, fax: 800.645.5439,

REFERENCES

1. Ensuring compliance: regulatory guidance for virus clearance validation. Bedford (MA): Millipore Corporation; 2002. Application note AN1650EN00.

2. European Agency for the Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products, Biotechnology Products Working Party. Notes for guidance on virus validation studies: the design, contribution, and interpretation of studies validating the inactivation and removal of viruses. EMEA/CPMP/BWP 268/95;1996 Feb.

3. Q5A viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Federal Register 1998 Sept 24;63(185):51075-51081.

4. European Agency for the Evaluation of Medicinal Products, Committee for Proprietary Medicinal Products, Biotechnology Products Working Party. Note for guidance on plasma-derived medicinal products. EMEA/CPMP/BWP 269/95; rev 3;2001 Jan.

5. Points to consider in the manufacture and testing of monoclonal antibody products for human use. Rockville (MD): US Food and Drug Administration; 1997.

6. Carter J, Lutz H. An overview of viral filtration in biopharmaceutical manufacturing. Euro J of Parenteral Sci 2002;7(3):72-8.

7. Ireland T, Bolton G, Noguchi M. Optimizing virus filter performance with prefiltration. BioProcess Int 2005 Nov;3(Suppl 10):44-7.

8. Varadarajan U. Experimental evaluation of viral contaminant removal from bio-products using a microfiltration approach. Process Validation of Biologicals Conference; 2001 Jan; San Diego (CA).

9. Graf EG. Virus filtration, an effective strategy for reducing viral contaminants. Process Validation of Biologicals Conference; 2001 Oct; London, England.

10. Parenteral Drug Association, Virus Filtration Committee. Virus filtration. Technical Report 41; 59 Suppl (S-2). Baltimore (MD): Parenteral Drug Association; 2005 March. PDA TR41

11. Bolton G, Cabatingan M, Rubino M, Lute S, Brorson K, Bailey M. Normal-flow virus filtration: detection and assessment of the endpoint in bioprocessing. Biotechnol Appl Biochem 2005 Oct;42:133-42.

12. Hirasaki T, Noda T, Nakano H, Ishizaki T, Manabe S, Yamamoto N. Mechanisms of removing Japanese encephalitis virus (JEV) and gold particles using cuprammonium regenerated cellulose hollow fiber (i-BMM or BMM) from aqueous solution containing protein. Polym J 1994;26(11):1244-56.

13. Cabatingan M. Impact of virus stock quality on virus filter validation. BioProcess Int 2005 Nov;3(Suppl 10):39-43.

14. Bolton G, Cormier J, Krishnan M, Lewnard J, Lutz H. Integrity testing of normal flow parvovirus filters using air-liquid based tests. Bioprocessing J 2006 Spring;5(1):50-5.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Lundbeck CEO Resigns Due to Code of Conduct Breach
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Janssen Partners with Transposagen Biopharmaceuticals for CAR-T Therapies
November 24, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Author Guidelines
Source: BioPharm International,
Click here