The Laboratory Control System: Fulfilling cGMP Requirements - A proactive approach is needed to ensure all elements of the laboratory system are in compliance. - BioPharm International


The Laboratory Control System: Fulfilling cGMP Requirements
A proactive approach is needed to ensure all elements of the laboratory system are in compliance.

BioPharm International

Table 1. Laboratory Testing Required for a Biopharmaceutical Product
Table 1 provides an example of analytical testing of a biopharmaceutical product.3,4 Identity, strength, purity, and potency assays should be qualified or validated. Accuracy, precision, specificity, and reproducibility of test methods should be established during validation. Technical transfer of the analytical methods should be performed with a qualified laboratory. Test article characterization for each batch or stability condition has to be documented. The analytical raw data and the reported results should be verified for data accuracy and integrity. Any deficiencies or deviations must be reported.

Current and approved analytical methods should be used for testing of samples. A copy of the draft method should be part of the ancillary documentation until the official method is published. System suitability results and acceptance criteria for the assay, per method, should be documented in the laboratory notebook.

Reference material should be fully characterized and documented, properly stored, secured, and utilized during testing.4 Identity tests for products are usually confirmed by comparison with the appropriate reference standard (Table 1). Reference standards should therefore be periodically evaluated for meeting appropriate specifications. Laboratory cultures and labile reagents have to be stored under suitable storage conditions.4


CGMPs require an adequate number of qualified personnel with practical experience to perform the assigned tasks.4 Training in cGMP practice is provided by a qualified trainer and periodically assessed. An active cGMP training program should be current and ensure that personnel are adequately trained and perform the functions they are responsible for, follow procedures for necessary precautions, and review laboratory data. Summaries of training and position description should be verified, maintained, and current. Ideally, the training department provides general training (e.g., weighing, pH), and specific laboratories provide functional training (e.g., HPLC, ELISA).

Laboratory Investigations

A deviation is an event in which procedures are not or cannot be followed. Investigations, which should attempt to identify the root cause, involve initial observations, immediate action, and corrections to ensure that the problem does not recur. Final disposition of any affected products should also take place. The formal report generated includes corrective actions taken on deficiencies previously exposed by audits. Subsequent inspections should guarantee that all corrections have been implemented in a timely manner.

Figure 2. The estimated percentage of time required for common cGMP activities in the laboratory
Current GMP expectations include what the regulatory agencies consider feasible and viable. "Best of industry" practices extend beyond written regulations. The percentage of time a laboratory scientist must allocate for common GMP activities is estimated in Figure 2. Time is allocated equally for both testing as well as compliance activities. It is critical for everyone to stay abreast of current cGMP requirements and guidelines. Implementing the cGMP regulations and guidelines enables the industry to prevent, detect, analyze, and correct problems and failings, ensuring that drug products are consistently high quality.

In the past, regulations were created as a reaction to problems and inspections were based on a checklist. Today's regulators encourage a proactive approach. Strategies include implementing and integrating quality systems substantiated on new technological advances and risk-based approaches. The FDA5 describes risk-based approach as one

"designed to establish product quality . . . founded on sound science and engineering principles for assessing and mitigating risks of poor product and process quality in the context of the intended use of pharmaceutical products."

blog comments powered by Disqus



Bristol-Myers Squibb and Five Prime Therapeutics Collaborate on Development of Immunomodulator
November 26, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here