The Processes - - BioPharm International

ADVERTISEMENT

The Processes

BioPharm International


The alternative approach is to engineer the fermentation process so that cells can attach themselves to the surface of the culture vessel or some other support.

Anchorage-dependent cell culture , as it is called, takes a number of forms. In the simplest forms, cells are attached to beads or enclosed in microcarriers that are allowed to float free in the medium. In other cases, cells might be attached to the wall of the vessel, to a matrix, gel, ceramic cartridge, or to some other structure (such as the tubes of a hollow-fiber system).

Confining cells to a support protects them from mechanical stresses. Sometimes other sorts of cells can be added to the support to provide catalytic activity. The chemical composition of solid supports can create favorable microenvironments. Animal cells can achieve higher densities in attachment culture than in suspension.

Cells can be immobilized in several ways. Collagen-based beads or polymer agents protect against shearing. Gels or solid matrices can simplify downstream processing, and in stirred or aerated systems, they can offer some protection from air sparging.

At the laboratory scale, major concerns are cell viability, mass transport, and the size of membrane pores. At the industrial scale, issues such as price, complexity, and reliability come up. Problems can include leakage and polymer toxicity.

Perfusion culture is made simpler when cells are retained in place using a mesh screen. Some perfusion cell culture systems are based on ceramic matrices that immobilize cells. The technique can immobilize nonadherent cells, protecting them from shear.

Microencapsulation . Cell-containing beads are a useful immobilization method for both anchorage-dependent and independent cells because they provide sparge protection. Encapsulated cells can hold and concentrate product, but beads may not retain their integrity for long-term culture. Although capsule membranes allow small molecules such as nutrients and oxygen to diffuse through, limitations in mass transfer can lower cell viability and contaminate or degrade products. High-molecular-weight products are kept within the capsules, and low-molecular-weight products diffuse out. The cost of encapsulation can be a disadvantage, as can oxygen transfer limitations at large scales. And encapsulated cells may not receive optimal nutrients.

Microcarriers are commonly used in attached cell systems. Compared to microcapsules, microporous beads (to which cells attach themselves) are easier to use and scale up. Adsorption is the simplest system for attaching cells to a support. Cells are mixed with beads (for example) and attach themselves to their surfaces. But adsorbed cells are not protected from shear forces.

There are several ways to attach cells to a support. Covalent attachment involves a chemical bond between the cells and their support. Leakage is minimized, but chemicals can affect cell viability. Again, no shear protection is provided. With ionic to covalent crosslinking, a cell suspension is treated with polymers that form bridges between the cells, making them aggregate loosely. The resulting cloudy flocs are not particularly stable, and cell leakage is still a problem, but additives can improve the situation. Entrapment offers a gentle solution to many attachment problems. Cells are mixed with polymers or monomers to form a gel that encases them. Leakage is reduced, and many cells can be loaded.

A Medium for Growth

Cells deteriorate, die, and disintegrate (lyse) when they get too few nutrients. Nutrients are provided to cultivated cells in the form of a medium.

Different kinds of cells require different media, and vendors offer preformulated media designed for all of the cells widely used in bioprocessing. In addition to the nutritive elements, media sometimes contain additives designed to improve the fermentation process. Pluronic F68, for instance, is used to make cell membranes more resistant to shear forces. Polyethylene glycol, polypropylene glycol, or silicon-based surfactants may be used to reduce foaming.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Compounding Pharmacy Issues Recall, But Challenges FDA Decision
July 22, 2014
AbbVie's Acquisition of Shire Could Save $8 Billion in Taxes
July 21, 2014
AstraZeneca Reveals Design for New Global R&D Center and Corporate Headquarters
July 18, 2014
AbbVie to Acquire Shire for $54.7 Billion
July 18, 2014
Particulate Matter Prompts Baxter's Recall of IV Solutions
July 17, 2014
Author Guidelines
Source: BioPharm International,
Click here