Applying Fusion Protein Technology to E. Coli - - BioPharm International


Applying Fusion Protein Technology to E. Coli

BioPharm International

35. Wulfing C, Pluckthun A. Correctly folded T-cell receptor fragments in the periplasm of Escherichia coli. Influence of folding catalysts. J. Mol. Biol. 1994; 242:655-669.

36. Sugamata Y, Shiba T. Improved secretory production of recombinant proteins by random mutagenesis of hlyB, an a-hemolysin transporter from Escherichia coli. Appl. Environ. Microbiol. 2005; 71:656-662.

37. Chopra AK, Brasier AR, Das M, Xu XJ, Peterson JW. Improved synthesis of Salmonella typhimurium enterotoxin using gene fusion expression systems. Gene. 1994; 144:81-85.

38. Fox JD, Kapust RB, Waugh DS. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Protein Sci. 2001; 10:622-630.

39. Englander SW. Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Rev. Biophys. Biomol. Struct. 2000; 29:213-38.

40. Creighton TE. How important is the molten globule for correct protein folding? Trends Biochem. Sci. 1997; 22:6-10.

41. Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, Benhar I. Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies. J. Mol. Biol. 2001; 312(1):79-93.

42. Nomine Y, Ristriani T, Laurent C, Lefevre J-F, Weiss E, Trave G. A strategy for optimizing the monodispersity of fusion proteins: application to purification of recombinant HPV E6 oncoprotein. Protein Eng. 2001; 14(4):297-305.

43. Sachdev D, Chirgwin JM. Properties of soluble fusions between mammalian aspartic proteinases and bacterial maltose-binding protein. J. Protein Chem. 1999; 18(1):127-136.

44. Scheich C, Leitner D, Sievert V, Leidert M, Schlegel B, Simon B, et al. Fast identification of folded human protein domains expressed in E. coli suitable for structural analysis. BMC Struct. Biol. 2004, 4(1):4.

45. Rozkov A, Enfors SO. Analysis and control of proteolysis of recombinant proteins in Escherichia coli. Adv. Biochem. Engin./Biotechnol. 2004; 89:163-195.

46. Prouty W, Goldberg A. Efffects of protease inhibitors on protein breakdown in Escherichia coli. J. Biol. Chem. 1972; 247:3341-3352.

47. Talmadge K, Gilbert W. Cellular location affects protein stability in Escherichia coli. Proc. Natl. Acad. Sci. 1982; 79:1830-1833.

48. Hogset A, Blingsom OR, Saether O, Gautvik VT, Holmgren E, Hartmanis M, et al. Expression and characterization of a recombinant human parathyroid hormone secreted by Escherichia coli employing the staphylocccal protein A promoter and signal sequence. J. Biol. Chem. 1990; 265:7338-7344.

49. Murby M, Uhlen M, Stahl S. Upstream strategies to minimize proteolytic degradation upon recombinant production in Escherichia coli. Protein Express. Purif. 1996; 7:129-36.

50. Martinez A, Knappskog PM, Olafsdottir S, Doskeland AP, Eiken HG, Svebak RM, et al. Expression of recombinant human phenylalanine hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell proteases. Isolation and characterization of the wild-type enzyme. Biochem. J. 1995; 306:589-97.

blog comments powered by Disqus



FDA Panel Unanimously Backs Secukinumab for the Treatment of Psoriasis
October 22, 2014
Roche to Expand and Improve its Basel Site
October 22, 2014
Pall ForteBio Releases Bioprocessing Contamination Detection Kit
October 22, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Amgen Sues Sanofi and Regeneron over Patent for mAb Targeting PCSK9
October 20, 2014
Author Guidelines
Source: BioPharm International,
Click here