Applying Fusion Protein Technology to E. Coli - - BioPharm International

ADVERTISEMENT

Applying Fusion Protein Technology to E. Coli


BioPharm International


Gene fusion technology can facilitate purification, enhance protein expression and solubility, chaperone proper folding, reduce protein degradation, and in some cases, generate protein with a native N-terminus. Nevertheless, protein expression remains an arduous task that involves a complex decision tree. Whether or not to use gene fusion technology is just one choice. Other factors include the expression system, host strain, mRNA stability, codon bias, inclusion body formation and prevention, site-specific proteolysis, secretion, post-translational modification, and co-overexpression. The complexity is compounded by the diversity of proteins. To date, no technology or reagent is a panacea. Thus, establishing tools and optimal conditions for each protein remains an empirical exercise.


Table 2. Summary of Several Comparative Studies that Examine the Effects of Various Fusion Partners on Total and Soluble Expression Yield.
Recently, several comparative studies have examined the effects of various fusion partners on total and soluble expression yield (Table 2). Marblestone et al. evaluated the expression and solubility of three model proteins fused to the C termini of MBP, GST, TRX, NusA, Ub, and SUMO tags.16 The tags were ranked in terms of increased total expression as TRX > SUMO ~ NusA > Ub ~ MBP ~ GST and increased soluble expression as SUMO ~ NusA > Ub ~ GST ~ MBP ~ TRX. Hammarstrom et al. cloned 27 human proteins (MW < 20 kDa) into various expression vectors and ranked the tags' ability to promote soluble expression as TRX ~ MBP ~ Gb1 > ZZ > NusA > GST > His6.17 Braun et al. compared the expression of 32 human proteins (molecular weight of which varied from 17 to 110 kDa) and ranked tags in terms of increased expression and yield after purification as GST ~ MBP > CBP > HIS6.18 Shih et al., in a study of 40 different proteins with eight different tags, observed that MBP gave the best overall results in terms of total and soluble expression.19 In one of the studies in Dyson et al., the solubility of 20 mammalian proteins was compared and the fusion tags were ranked in terms of increased soluble expression as TRX ~ MBP > HIS10 > GST > GFP.20 De Marco et al. demonstrated that NusA was better than GST at enhancing the solubility and stability of recombinant proteins.21

The inconsistency of the data from these comparative studies only solidifies the statement that tools and optimal conditions for each protein remain empirical and that no technology or reagent is a panacea. Nevertheless, it is likely that in the future generalities about specific fusion tags may be made (e.g., for entire protein classes). As the comparative studies suggest, gene fusion tag systems range dramatically in efficiency.

Yield and Activity Factors

Factors that influence yield and biological activity include: a) the affinity purification scheme; b) enhancement of recombinant protein expression; c) protein folding and enhanced solubility; d) protection from degradation; e) size of the fusion tag; and f) the specificity, efficiency, and site of cleavage. Herein lies a further discussion of these factors.

Affinity Purification Scheme


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

PDA Announces Technical Report on Drug Shortages
September 9, 2014
European Commission Approves RoACTEMRA for Treatment of RA
September 9, 2014
DPT Laboratories Acquires Media Pharmaceuticals' Lakewood Facilities
September 5, 2014
Merck KGaA Breaks Ground on Facility in China
September 5, 2014
FDA Releases Guidance Electronic Submission of Lot Distribution Reports
September 5, 2014
Author Guidelines
Source: BioPharm International,
Click here