Boosting Mammalian Cell-line Manufacturing Pilot Plant—A Case Report - - BioPharm International


Boosting Mammalian Cell-line Manufacturing Pilot Plant—A Case Report

Table 3. Proven Strategies for Development of High-Yielding Cell Lines
In addition to the work done with well-established cell lines, a designer cell program was incorporated to develop new cell lines of human animal or avian origin from scratch, using different tissues of the respective species. ProBioGen is confident that new cell lines based on rational design will be able to outcompete traditional cell lines and primary cells in the production of recombinant proteins and virus vaccine strains. Benchmark results of our cell engineering effort are shown in Table 3.

Methods in Brief for the Three Referred Cell Development Programs (1) CHO DHFR-cells from a qualified source were electroporated with the ProBioGen high-level expression vector containing the transgene (a human therapeutic glycoprotein) under the control of a proprietary hybrid promoter and flanked by two independently expressed selection markers. Clone pools were derived employing a dual-selection strategy. Highest producers were established in a small-scale screening (30 clones). The complete process — from selection of highly productive cell pools, to cloning of single cells, to selection of a high producer cell line — was performed in ADCF basic medium with GMP-compliant protein supplements. The secreted protein was measured in a specific sandwich ELISA and calculated on a per cell and day basis.

(2) The human mouse heteromyeloma CB03, secreting large amounts of IgM, was transfected by electroporation with a targeting vector containing the leptin Fc-fusion protein gene. The vector was designed to allow for homologous recombination within the Igµ locus. Through targeting, the endogenous Ig promoter was replaced with a CMV-EF1alpha promoter. Homo-logous recombinants were detected by the absence of Igµ expression and the presence of the fusion protein, verified by PCR. After recloning and identifying a stable, high-producer, the secreted fusion protein was measured in a specific sandwich ELISA test in a stationary culture.

(3) A human neuronal designer cell line, derived from primary cells in a fully documented process, was transfected with Effectene (Qiagen, Germany) for stable expression of AAT from a proprietary hybrid promoter. A standard selection marker (puromycin) in an independent transcription unit was used to screen for a small number of high-producer clones. The product, which secreted over 72 h from stationary culture in T flasks, was quantified by a specific sandwich ELISA.

Once 40 pg/c-d can be reached for a certain protein in standard cell culture in CHO, media selection and process optimization is expected to increase volumetric productivities in excess of optimum-performing, fed-batch processes. The future potential of designer cell lines derived from scratch is illustrated by the results obtained so far. A comprehensive summary of current experiences of the cell-development team is described in detail elsewhere.6

Figure 6. Comparison of Annual Plant Capacities Extrapolated for Low-and High-Yielding Cell Lines
PILOT-PLANT CAPACITIES AT A GLANCE Figure 6 illustrates the boosting of plant capacities from 650 g of crude product (without purification) for low-expression cell lines to more than 5 kg crude protein per year. We assumed the use of cell lines with cell specific productivities of 40 pg/c-d for batch manufacturing.

blog comments powered by Disqus



FDA Extends Review of Novartis' Investigational Compound for Multiple Myeloma
November 25, 2014
Merck Enters into Licensing Agreement with NewLink for Investigational Ebola Vaccine
November 25, 2014
AstraZeneca Expands Biologics Manufacturing in Maryland
November 25, 2014
GSK Leads Big Pharma in Making Its Medicines Accessible
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Author Guidelines
Source: BioPharm International,
Click here