Application of Overall Equipment Effectiveness to Biopharmaceutical Manufacturing - Overall equipment effectiveness is an ideal measure for capital equipment-intensive businesses such as biopharmaceut


Application of Overall Equipment Effectiveness to Biopharmaceutical Manufacturing
Overall equipment effectiveness is an ideal measure for capital equipment-intensive businesses such as biopharmaceutical manufacturing.

BioPharm International
Volume 22, Issue 5


Already being actively followed by several industries, the overall equipment effectiveness (OEE) approach quantifies the percentage of time that equipment operates to produce an acceptable product. It measures how effectively machines are being used by examining productivity and performance diagnostics at the equipment level. 1,2 It also monitors actual performance relative to performance capabilities under optimal manufacturing conditions. 3 OEE breaks down non-operable time into shutdown losses (such as preventative maintenance, personnel breaks, and training), operational downtime, changeover downtime, equipment failure, process failure, and production adjustment losses, which then are measured to calculate availability, performance, and quality losses. 1

Overall equipment effectiveness (OEE) helps maximize value-added activities by indicating precisely where potential improvements might be most effective. This makes it an ideal measure for capital equipment-intensive businesses such as biopharmaceutical manufacturing.1 Other typical OEE improvement opportunities include faster changeover, less idle time, optimized equipment maintenance, shorter production cycle times, increased equipment reliability, and optimized equipment purchases.4



Table 1. Versions of overall equipment effectiveness
Different versions of OEE have been developed and adapted to specific industry problems. Some are oriented to measure overall factory or plant effectiveness instead of equipment (Table 1).5 At a micro level, OEE can focus on a specific piece of equipment; at a macro level it can focus on a processing suite, equipment process train, or even the facility itself. Different OEE versions use similar methodologies.6

In many industries, a plant-wide view is needed to optimize factory effectiveness, especially for complex, resource-constrained processes that often have significant human and equipment interactions.7 A composite picture is developed for key attributes such as equipment effectiveness, cycle-time efficiency, on-time delivery, manufacturing costs, process yields, production volumes, inventory turn rates, and ramp up performance.8 The effectiveness of this approach was demonstrated by wafer fabricators, and it is readily applicable to biopharmaceutical manufacturing.4

OEE's goal is to develop systems interacting and interfacing with all process equipment to ensure "the right material is with the right tool at the right time."4 This approach avoids instituting locally beneficial controls and improvements that may unintentionally reduce overall efficiency.4 Activities and relationships among different equipment and processes are combined, integrating information, decisions, and actions across several independent systems.2,6,8,9 Such an approach is explicitly applicable to several aspects of biomanufacturing (such as water for injection and clean steam usage across processing suites, and product stream flow from cultivation to harvest to isolation suites). Computer integrated manufacturing (CIM) through automated manufacturing execution systems (MES) supports these integrated improvement goals by 1) managing complexity, traceability, and genealogy, 2) simplifying quality and yield management, 3) facilitating production planning and scheduling, and 4) managing data to support decisions.4

OEE Calculations

OEE is calculated based on the product of availability, performance, and quality, each expressed as a time-based ratio:2

OEE = Aeff*Peff*Qeff Eq. 1

in which the availability efficiency, (Aeff = Tu/Tt), is the operating or "up" time divided by the total time; performance efficiency, (Peff = Tth/Tact), is the theoretical processing time to achieve output goals divided by actual processing time, and the quality efficiency (Qeff = Pg/Pa), is the time spent producing good product output divided by total time spent making all product lots.

Simple OEE is calculated as the ratio of good to total (theoretical) output, each expressed as a count:

Simple OEE = Pg/Pth Eq. 2

in which Pg is the number of actual conforming (good) lots and Pth is the number of theoretical possible lots, assuming maximum levels of availability, performance, and quality.2,3,6,10

blog comments powered by Disqus



AbbVie/Shire Deal Officially Off
October 20, 2014
Amgen Sues Sanofi and Regeneron over Patent for mAb Targeting PCSK9
October 20, 2014
EMA Works to Speed Up Ebola Treatment
October 20, 2014
Lilly to Close Manufacturing Facility in Puerto Rico
October 17, 2014
BioReliance Introduces New Predictive Assays
October 17, 2014
Author Guidelines
Source: BioPharm International,
Click here