Versatility of a Single-Use Bioreactor Platform for Culture of Diverse Cell Types - Disposable bioreactors can support growth of bacteria and different mammalian cell types, as well as allow efficient

ADVERTISEMENT

Versatility of a Single-Use Bioreactor Platform for Culture of Diverse Cell Types
Disposable bioreactors can support growth of bacteria and different mammalian cell types, as well as allow efficient scale-up.


BioPharm International
Volume 22, Issue 2

ABSTRACT

Using one unified single-use cell culture platform for facilities that require culture of different types of cells can significantly reduce equipment costs, the risk of cross-contamination, and the requirement for training, cleaning, sterilization, and validation. Here, a bioreactor platform consisting of a presterilized, flexible, disposable plastic bag on a rocking platform and filled with media and a gas mixture is shown to support the growth of E. coli, Chinese hamster ovary (CHO) cells, and hybridoma cells as measured by the daily cell density, nutrient consumption, and production of metabolites.



Single-use disposable components offer many advantages in biologics manufacturing, and they collectively provide a platform to culture diverse cell types in a facility. This is particularly important for multi-use contract manufacturing facilities such as PacificGMP that service the needs of diverse clientele.

Disposable components include bioprocess bags, tubing, capsule filters, tangential flow capsules, bioreactors, chromatography capsules, and mixing systems. They are supplied clean and ready to use, which obviates the need for sterilization and decreases the requirement for services such as water for injection (WFI) water systems, and steam generators. Disposable components are not used for subsequent operations, eliminating the chance of cross contamination between process runs. Because the need for stainless-steel equipment is reduced or eliminated, long lead times for equipment installation can be avoided. Single-use ystems are less complex, reducing engineering requirements. There is no need for clean-in-place (CIP) or steam-in-place (SIP) operations, or any of the associated piping, valves, controls, or pressure rating of vessels. Moreover, the use of disposable components reduces the complexity of validation. Because there are fewer reusable components, fewer items need to be tracked, and extensive validation studies for sterilization and cleaning can be eliminated. Finally, by removing the limitations of hard piping and stationary tanks, disposable components allow for operations to be more rapidly reconfigured for a new process run.

There are several options for disposable, scalable bioprocess bags for completing upstream processing steps. The design of a cell culture system will affect the shear forces experienced by cells as well as the mass transfer of gases, and different types of cells will have different sensitivities to these parameters. Generally, mammalian cells are more sensitive to shear forces than bacteria, but bacteria are more sensitive to oxygen limitation. The following studies demonstrate that the Wave Bioreactor (GE Healthcare Chalfont St. Giles, UK) effectively supports the growth and productivity of different types of cells, and the versatility of the platform is further demonstrated by the flexibility of feed strategies and scalability of the systems.

BIOREACTOR SET UP

Each bioreactor consists of a presterilized, flexible, disposable, plastic Cellbag that is placed on a rocking platform and filled with up to half of the bag volume with media. The bioreactors used in these studies were the System20/50EH, System200, and System1000 (GE Healthcare) with maximum culture volumes of 25, 100, and 500 L of media, respectively. The following naming convention will be used to identify the culture set up: the volume of media in a Cellbag of a certain volume, e.g., 100/200 L indicates 100 L of media in the System200 bioreactor.

The remaining volume of the Cellbag is inflated with a process gas mixture, composed of carbon dioxide (CO2) and oxygen (O2), which is mixed with air in a controlled manner. These gases are added using a sterile inlet filter that is pre-attached to the bag. Continuous airflow provides oxygenation and gas exchange for pH control and CO2 removal. Exhaust air passes through another sterile filter and a backpressure control valve. The backpressure control valve ensures that the Cellbag is always fully inflated at any airflow and prevents overinflation.

Liquid mixing and mass transfer of gases are achieved by rocking the Cellbag back and forth at a user-determined rocking angle and frequency. The waves generated by the rocking motion greatly increase surface area to enhance gas transfer. The wave motion also promotes bulk mixing and off-bottom suspension of cells and particles without any damage to the cells. Temperature is controlled by a heater located in the base plate of the unit that warms the underside of the bag. The heater is regulated by a noninvasive temperature sensor that is also in the base plate of the unit.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

NIH Seeks to Improve Vaccine Response with New Adjuvants
September 30, 2014
New Report Details Players and Pipelines in the Biosimilar Space
September 30, 2014
Baxter International Plans to Open R&D Center for Baxalta
September 30, 2014
FDA Releases First-Ever Purple Book for Biosimilar Characterization
September 26, 2014
FDA and NIH Win Award for IP Licensing of Meningitis Vaccine
September 26, 2014
Author Guidelines
Source: BioPharm International,
Click here