Lifecycle Cost Analysis for Single-Use Systems - Less complicated single-use systems have more favorable lifecycle economics. - BioPharm International

ADVERTISEMENT

Lifecycle Cost Analysis for Single-Use Systems
Less complicated single-use systems have more favorable lifecycle economics.


BioPharm International Supplements


Abstract

The decision to use single-use systems for manufacturing pharmaceuticals hinges on many factors, but the major driving force is a desire to save cost and time. Although there is no doubt that single-use systems reduce capital costs, this analysis shows that in many cases lifecycle costs increase. This article describes a methodology used during concept design to evaluate lifecycle costs of single-use systems. The methodology is implemented in a case study to determine the optimum mix of stainless-steel and single-use systems for a new biopharmaceutical manufacturing facility. Lifecycle costs, expressed as net present value (NPV), are evaluated for typical bioprocess applications including fermentation, recovery, purification, media and buffer prep, and buffer storage.


Gary S Chapman/Getty Images
Single-use systems offer many advantages over conventional stainless-steel systems and have rightly gained wide acceptance in the biopharmaceutical industry. Advantages such as increases in batch success rate, eliminating potential cross contamination, more rapid changeover between campaigns, reductions in water and waste water requirements, and eliminating clean-in-place (CIP) and steam-in-place (SIP) validation have all been cited as reasons for using single-use systems. However, one of the primary drivers for implementing these systems continues to be the desire to reduce project cost and time.

Although there is no doubt that using single-use systems reduces capital costs, this article shows that in many applications, capital savings are offset by increased operating costs. Therefore, lifecycle costs for many single-use applications are higher than for conventional stainless-steel systems. Lifecycle costs vary depending on how single-use systems are implemented, and also with the location of the facility. Capital, labor, and utility costs vary greatly between the United States, Europe, and Asia. A single-use application that reduces labor hours by 20% may make economic sense in one location but not in another. Similarly, capital savings associated with single-use systems will depend on the geographic location of the facility, and whether the equipment is sourced locally or is imported.

Generally, less complicated single-use systems such as simple storage bags for media and buffer have more favorable lifecycle economics than single-use technologies designed for more complex applications. This is because the low replacement cost of single-use components compare favorably with the cost to maintain and clean stainless-steel equipment. On the other hand, lifecycle economics for more complicated single-use applications such as bioreactors and fermenters is less clear because of the high cost of the single-use components.

In this article, we describe a quick method for evaluating lifecycle costs for single-use systems compared with their more conventional stainless-steel counterparts. Because the decision to use single-use systems needs to be made at the beginning of any project, our evaluation is done at a level of detail suitable for concept design. The methodology is then implemented in a case study to determine the optimum mix of stainless-steel and single-use systems for a new biopharmaceutical manufacturing facility. Lifecycle costs are evaluated for typical bioprocess applications including fermentation, recovery, purification, media and buffer preparation, and buffer storage.


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Mallinckrodt to Acquire Questcor Pharmaceuticals
April 16, 2014
EMA Warns of Falsified Herceptin Vials
April 16, 2014
PhRMA Report Reveals Growth Trajectories and Policy Factors Affecting Biopharmaceutical Growth
April 11, 2014
American CryoStem and Rutgers University File Joint Patent on Stem Cell Platform
April 11, 2014
Center for Biologics Evaluation and Research Relocates
April 11, 2014
Author Guidelines
Source: BioPharm International Supplements,
Click here