Best Quality Practices for Biomedical R&D - Members from an ASQ working group provide analytical methods to enable PAT. - BioPharm International

ADVERTISEMENT

Best Quality Practices for Biomedical R&D
Members from an ASQ working group provide analytical methods to enable PAT.


BioPharm International
Volume 25, Issue 8, pp. 48-51

GxP regulations are in place to ensure the purity, quality, and safety of pharmaceuticals. Manufacturing and quality control testing of approved drugs falls under good manufacturing practice (GMP) regulations. Safety studies for drugs are regulated by good laboratory practice (GLP) regulations. There currently are no guidelines for drug discovery and biomedical research activities. This phase of drug development is relevant to stage 1 product design in the pharmaceutical product lifecycle. Because researchers have no standard to follow, there is often wasted time and effort when unreliable studies need to be repeated.

A working group from the American Society for Quality (ASQ) Food, Drug, and Cosmetics Division (FD&C) published its first technical report, Best Quality Practices for Biomedical Research in Drug Development, in June 2012. This report addresses the need for biomedical research standards and provides the first step leading to the eventual creation of an ISO standard. Drugs and therapeutic products touch our daily lives in myriad ways. From the vitamins and aspirin we take for common ailments to the cardiac and cancer treatment medicines for serious illness to the hormones in animal feeds, these drug products find their way into everyday use. The public's interest is captured by the expectations provided by biomedical research and drug development. Besides the commercial value, the governmental and private funding support in the developed countries, primarily the US, provides the overarching hope of curing human illness and suffering, while providing the additional benefit of greater economic development. One aspect all drug developments have in common is specific government regulations known as GMPs. These regulations ensure that drug products are safe, pure, and efficacious. The GMP regulations ensure that all aspects of the manufacturing processes use "good practices" and science to produce drugs with the integrity and validity the process was intended to produce. These regulations can all be found under their respective sections of the Code of Federal Regulations (CFR) Title 21, Parts 210 and 211 in the US. Similar documents exist in Canada, Europe, and globally through the World Health Organization's guidance.

Routine medical laboratories involved in patient care are covered by well-defined international quality standards (ISO 15189) and national laws (42 CFR 493). In pharmaceutical R&D, only the nonclinical laboratory safety studies are governed by the GLP regulations 21 CFR Part 58. There are no other well-defined quality standards existing for other non-GLP laboratory research, including biomedical research that may lead to new drug discovery. This potentially causes an incongruous situation in a biomedical research laboratory, where for example, a blood sample from a rabbit is subjected to stricter quality standards than a human sample. FDA expects that "sound quality principles" are applied to the processing of human samples, but these principles are not well defined or delineated.

Much of the aforementioned investment, both financial and research, comes from the US. For example, the proportion of the global drug-development pipeline belonging to organizations headquartered in the United States has increased to 80% in the past decade (1). In the US alone, about $68 billion per year is spent on biomedical research. Due to poorly designed studies or the irreproducibility of biomedical research data and studies, the consequences of pursuing a drug development dead end have become an increasingly serious issue. The credibility of this biomedical research data has lead to costly and often futile attempts at repetition of these studies. These efforts are a unnecessary waste of scarce valuable funding resources. Is it not better that the spending on these drug-development programs find new therapeutics for the many unmet medical needs and not be squandered on irreproducible or worse, fraudulently reported research?

The National Center for Dissemination of Disability Research published a whitepaper that supports this concept... "the widespread belief that the quality of scientific research is often uneven and lacking in credibility, making it difficult to make a confident, concrete assertion or prediction regarding evidence for improving practice or consumer outcomes (Levin & O'Donnell, 1999; Mosteller & Boruch, 2002; Shavelson & Towne, 2002). ...is also due, in part, to the lack of consensus on the specific standards for assessing quality research and standards of quality for assessing evidence (Gersten et al., 2000; Mosteller & Boruch, 2002). For example, several researchers have contended that some of the current peer review processes and standards for assessing quality are not well suited for research in the disability arena (Gersten et al., 2000; NCDDR, 2003; Spooner & Browder, 2003)" (2).


Figure 1: New Molecular Entities (NME) and R&D spending 2001-2009.
There has been an overall significant decline of productivity in pharmaceutical biomedical research over the past 15 years when comparing the number of new medicines to the equivalent funding spent in R&D (see Figure 1).

Obstructions to new drug entity breakthroughs have received much scrutiny since the recent decade-long decline in new drug approvals. Thus, notwithstanding the doubling of biomedical research funding and the shift toward clinical research by pharmaceutical companies, "the number of new molecular entities approved by FDA has fallen...as a consequence, pharmaceutical productivity decreased over the last 10 years, and it is lagging behind that of the biotechnology and device sectors... Financial return to investors has paralleled those changes in productivity" (3).

One of the root causes for the reproducibility problem is the lack of a common quality standard for nonregulated biomedical research. Traditionally, non-regulated biomedical research has been considered off-limits for formal quality standards. Scientists in general regard their work as a highly intellectual activity where quality is knowledge and experience is an integral part of the scientific rigor that they apply. A longstanding tradition of quality control in science has been peer review of the results, but modern pharmaceutical research has become so complex that peer review has a limited value today. Also, "some scholars suggest that while standards such as peer review and standardized reporting are important benchmarks, research should not be judged solely by whether or not it is published in the leading journals (Boaz & Ashby, 2003). While journal publication and citation analysis provide quantitative data, it is a faulty assumption that all 'research' that is published in journals or cited by others is accurate, reliable, valid, free of bias, non-fraudulent, or of sufficient quality (Boaz & Ashby, 2003). Further, citation analysis is primarily a measure of quantity and can be artificially influenced by journals with high acceptance rates (COSEPUP, 1999)" (4).

The scope and dimension of modern research is moving science out of the realm of individual scientists and into a globalized team where standards, transparency, and reproducibility have become key requirements. Scientific work that cannot be reproduced or independently verified by others is a waste of valuable limited resources. Also, biomedical research generates intellectual property, which has become increasingly subject to internal and external scrutiny and is often challenged in litigations. The authenticity and integrity of scientific data underlying an intellectual property claim are therefore of utmost importance. To prove the authenticity and integrity of scientific data, studies and experiments must be conducted under controlled and verifiable conditions.

A common quality guideline when utilized in biomedical research and drug development will ensure the validity and credibility of scientific data from different research institutions and facilitate the mutual acceptance of research results. Such a document will help to eliminate unnecessary duplication of existing research work, make published research data more reliable, and increase the overall lagging productivity of biomedical research. These attributes will benefit patients worldwide by speeding drugs to market, meet global regulatory compliance requirements, and enhancing investor interest in developing new innovative drug product that produce a solid return on investment (5).


blog comments powered by Disqus

ADVERTISEMENT

ADVERTISEMENT

Lundbeck CEO Resigns Due to Code of Conduct Breach
November 24, 2014
IMS: Global Spending on Medicines to Rise 30% by 2018
November 24, 2014
Janssen Partners with Transposagen Biopharmaceuticals for CAR-T Therapies
November 24, 2014
Amgen Opens Single-Use Manufacturing Plant in Singapore
November 20, 2014
GPhA Issues Statement on Generic Drug Costs
November 20, 2014
Author Guidelines
Source: BioPharm International,
Click here